├ FLEXWIN

Objective

FLEXWIN proposes a significant advance towards smart RF microsystems by combining 1.) an RFMEMS switch process monolithically integrated with a Si/SiGe BiCMOS process, 2.) highly reconfigurable mm-wave building blocks, able to be used over a broad frequency range and for different applications, 3.) a new RF-system design paradigm built around the concepts of reusability, multifunctionality and reconfigurability and 4.) environmental sensing and control built into multifunctional RF ICs with digital control.As a first demonstrator of the proposed highly innovative FLEXWIN technology platform, a smart reflectarray architecture for broadband communication links will be realized. In fact, the core FLEXWIN ICs will be used as intelligent pixels providing spatial power combining with full individual amplitude and phase settings of each pixel in transmit and receive mode controlled by a serial bus. Together with the monolithic integration of the environmental sensors on the very same IC, it dramatically reduces the antennas control system complexity providing significant advances in RF frontend adaptability.The validity of the design paradigm will be further explored in two reconfigurable IC demonstrators using the RF MEMS SiGe BiCMOS technology and deliberately spaced in the radio spectrum: reconfigurable “commodity” building blocks up to 5 GHz, addressing mobile and wireless data applications, and for the 30-64 GHz range, addressing point-to-point, and emerging wireless LAN applications.Overall, FLEXWIN will demonstrate enhanced and smart capabilities of mm-wave systems due to built-in intelligence allowing convenient and flexible control of important parameters, and the use in harsh environments due to built-in sensing and autonomous parameter adjustment in each module. Further, it will establish reconfigurable multi-functional millimetre-wave ICs as an off-the-shelf commodity which will ease mm-wave system implementation and shorten the time-to-market.

Related publications
[1] A. Shamsafar et al., «A Four-Port SiGe BiCMOS Duplexer for Ka-Band SatCom on the Move User Terminals», IEEE Microwave and Wireless Components Letters, vol. 25, n. 11, pagg. 733–735, 2015, doi: 10.1109/LMWC.2015.2479854.
[2] A. I. Sandhu, E. Arnieri, G. Amendola, L. Boccia, E. Meniconi, e V. Ziegler, «Radiating Elements for Shared Aperture Tx/Rx Phased Arrays at K/Ka Band», IEEE Transactions on Antennas and Propagation, vol. 64, n. 6, pagg. 2270–2282, 2016, doi: 10.1109/TAP.2016.2552550.
[3] F. Tabarani, L. Boccia, T. Purtova, A. Shamsafar, H. Schumacher, e G. Amendola, «0.25-um SiGe BiCMOS System-on-Chip for K-/Ka-Band Satellite Communication Transmit–Receive Active Phased Arrays», IEEE Transactions on Microwave Theory and Techniques, vol. 66, n. 5, pagg. 2325–2339, mag. 2018, doi: 10.1109/TMTT.2017.2774804.
Partners
Funding

EU-FP7-ICT – Specific Programme “Cooperation”: Information and communication technologies

2010-2014

Project website

https://cordis.europa.eu/project/id/257335