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Abstract

Being in the middle of an industrial revolution caused by interconnected cyber physical
systems, the emerging concept of Digital Twin (DT) represents a driver for “Industry
4.0”. Taking advantage of the disrupting digital technologies such as Artificial Intelli-
gence (AI), Machine Learning (ML), Big Data Analysis, and Internet of Things (IoT),
the DT is a key concept for developing new applications and solutions in several domains.
Indeed, by collecting simple data from the environment (general-purpose sensing) and
determining complex aggregations of events using AI techniques and algorithms (syn-
thetic sensing), it is possible to build and work with a digital version of physical objects.
Although DT became very popular in the so called Industrial IoT (IIoT) domain, Smart
Cities systems started to take advantage of this technology. As a result, nowadays the
definition of Digital Twin is a prerequisite of many systems.

In this thesis the design, the implementation and the analysis of a prototype digital-
twin-based Traffic Monitoring System (TMS) are presented, in which edge computing,
transfer learning, and tiny-AI merge with the new DT technology. Overall, the aim of
this thesis is to identify, classify physical objects in the context of a traffic monitoring
system and use this information to automatically build DTs representing both real roads
and vehicles. By virtualizing a large environment, its status data can be accessed as the
normal information available on the web, and therefore it could be used to improve both
the traffic congestion and viability as well as the monitoring of pollutants emitted by
vehicles. Hence, this work presents the challenges faced and the full description of both
hardware and software components that constitutes the whole system structure.

The deployment of ML models at the Edge of the network, allows eventually to (i)
improve inference performances, by exploiting the Google Edge Tensor Processing Unit
(TPU); (ii) reduce bandwidth and power consumption, by reducing the amount of data
to be transmitted; (iii) reduce latencies, by cutting back round-trips to a server during
models’ execution.
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Chapter 1

Introduction

The evolution of Internet of Things (IoT) technologies makes it possible to transform
“physical spaces” into smart environments. Smartness means the ability to “measure”
important activities, phenomena, and actions occurring in the environment and to pro-
vide insights on how to optimize the territory’s resources for the best interest of the
community.

Nowadays, the dynamics associated to urban activities - e.g., the concentration of
economic activities and the aggregation of population in metropolitan areas - and the
worrying climate crisis, is pushing toward a digitization process to create innovative
and sustainable solutions able to improve territory activities such as (i) the waste man-
agement; (ii) the energy and water provisioning; (iii) the traffic congestion; (iv) the
transportation management; (v) the power generation; (vi) its governance; and (vii)
citizens lifestyle. This trend is emerging for large and densely populated cities as well
as for suburban or rural areas. Even if these areas may have different and sometimes
conflicting requirements, they all need sensing and actuation capabilities to measure the
“usage” of the area and to orchestrate the available resources, in order to optimize their
consumption in favor of the quality of life of people and enterprises of the territory.

Such a trend is recognizable since the beginning of the 21st century, in fact cities and
territories have become increasingly smarter [1]. The great advancement in exploiting
pervasive information technologies - such as IoT - along with the development of increas-
ingly smart devices, gave cities the possibility to gather a huge amount of data from a
wide variety of activities spread in the whole metropolitan area [2–6]. Data represents
the means through which inanimate objects can have knowledge about the environment
that surrounds them so as to monitor activities and evolve with the environment itself.

In large environments such as smart cities, a single-purpose sensing approach, i.e.
the deployment of a single sensor network for monitoring and controlling a single aspect
of interest (e.g., pollution, noise, water level), is usually adopted and implemented.
Although this technique tends to be robust, especially when only a few aspects of the
environment are monitored, it loses effectiveness when the features to monitor increase,
thus requiring the deployment of a larger set of sensing infrastructure. Moreover, as a
further issue, in large environments different networking capabilities are needed in order
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CHAPTER 1. INTRODUCTION

to function and collect data, which is also typically siloed, i.e. information is collected
and maintained in isolation. Due to all these factors, the integration and the creation
of relationships between different types of data taken in different instants and location
(e.g., traffic and pollution intensity) are difficult to correlate as well as the deployment
and maintenance of such a huge number of sensors and networks, which comes at a great
cost.

Ideally, a single network with flexible and adaptable sensors (i.e., sensor capable of
measuring basic phenomena and, by using Artificial Intelligence or mathematical models,
deriving precise and specific measures) would be a major step towards the large-scale
“softwarization” of large environments. The basic idea is to collect general measures
from the terrain and by means of software techniques to derive specific measures and
values. This approach means to move the sensing from specific hardware to specialized
software operating in conjunction with “general-purpose” sensing [7]. Using just a single
sensor board to detect many aspects (one-to-many, see Figure 1.1), may prove to be more
flexible, scalable, and suited for large contexts with thousands of facets to be measured.
The so-called general-purpose sensing, aims at reducing costs and enhances sensing and
computing capabilities by making objects smarter than ever.

Figure 1.1: Canonical approaches in environmental sensing, source [7]).

In this context (general-purpose sensing applied to large environments) the concept
of Digital Twin (DT) found a fertile ground. A DT represents the virtual (digital)
companion of a physical object (PO) [8], i.e., a software counterpart of a thing built
by means of data collections which describe status and properties of a physical object
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CHAPTER 1. INTRODUCTION

using sensors in the field. DTs offer a way to move from the physical space to the vir-
tualized one, in which we are able either to monitor the POs for their entire life cycle,
by keeping permanent connections between them and their logic objects (LOs), or to
simulate their behavior under several conditions, by replicating LOs concurrently in sev-
eral environment. Moreover, DTs can help optimize physical asset performance through
efficient predictive and preventive maintenance operations, reducing overall operational
costs and downtime, by offering access to real-time data as well as historical information.
Therefore, DTs represent the point of connection between the physical and digital world
[9].

1.1 Objective

This thesis is written as a result of the Double Degree program attended and of the
collaboration between professor Noel Crespi’s laboratory (DICE Lab, Telecom SudParis,
France) and professor Giancarlo Fortino’s laboratory (SPEME Lab, Unical, Italy) and
aims to explore the usage of general-purpose sensing in association with the creation and
exploitation of DTs, by laying the groundwork of a digital-twin-based Traffic Monitoring
System (TMS). General-purpose sensing is, in principle, a technique that could improve
this digitization process, offering a smart way of gathering huge quantities of data with
minimal effort. These data can be intelligently analyzed and understood in order to
represent actors operating in the environment and to represent them as Digital Twin.
This approach to the construction of Digital Twins is complementary to the mainstream
one, in which instead DTs are manually built starting from data gathered from the
environment. In this thesis, the objective is to automatically build DTs by collecting data
from the environment and incrementally refine and improve the logical representation of
the physical objects.

In order to assess the approach (it could be summarized as the combination of “gen-
eral purpose sensing”, “synthetic sensing” and “reverse Digital Twin creation”) a hard-
ware and software system is needed. The proposed system therefore consists of the
following building blocks:

• an edge engine, i.e., a single device comprising several hardware modules, whose
main task is to collect data for digitizing the specific road (local, highway, city
street, pedestrian street, etc.) on which it is placed on;

• communication system, it is used for forwarding the information collected to all
the involved software components;

• a controller and forwarder (NodeRED), it is used in order to dispatch information
to different components or activate components;

• databases for storing the data related to the different DTs “captured”;

• a DT framework (based on Eclipse Ditto) for organizing and querying the different
DTs.
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CHAPTER 1. INTRODUCTION

The edge engine is the major focus of the thesis. It captures and provides relevant
information useful both for checking the road viability remotely - such as traffic conges-
tion, road condition, etc. - and for monitoring environmental parameters (temperature,
humidity, pollutant etc.). Moreover, it is able to detect both the number and the spe-
cific type of vehicles which, in a period of time, pass through that street. All the data
acquired by devices on the field are both stored and visualized on a specific dashboard
and used by other the software parts of the system to create and maintain one DT that
represents the specific road in which the hardware device is placed (R-DT); and one DT
for each specific type of vehicle detected (V-DTs).

The final objective is to acquire enough data, exploiting the new general purpose
sensing approach, to create a signature of each vehicle, i.e. something that can identify
the class of a given product (specific type, brand and model of a vehicle). This signature
can be achieved by capturing images, engines’ sounds and pollution data of a given
vehicle, and can be stored inside the DT. The latter could become a kind of signatures’
repository that deep learning algorithms could use to identify specific vehicles and, based
on that, perform related actions such as monitor single vehicles’ environmental impact,
vehicles’ failures recognition, emergency detection, etc.

The rest of the Thesis is organized as follows. Chapter 2 presents the theoretical
concept that leads the research (general purpose sensing and DTs) and how they can be
merged to create innovative solutions in large environments such as Smart Cities. Then,
Chapter 3 introduces the hardware components and the main software tools used for
building the proposed system. Chapter 4 offers an in-depth description of the digital-
twin based TMS: (i) goal and purposes; (ii) hardware and software modules placement;
(iii) implementation details. Chapter 5, instead, presents a full analysis about bene-
fits achieved exploiting Edge AI in terms of inference latency, accuracy and bandwidth
consumption. Moreover, a comparison between performances on different hardware con-
figurations (Edge TPU, Embedded CPU and Desktop CPU) is shown. Finally, Chapter
6 includes the concluding statements concerning the findings in this research to fulfill
the above mentioned thesis’s objectives, as well as the future works needed to improve
the TMS.
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Chapter 2

State of The Art

2.1 General Purpose Sensing and AI

In order to exploit a full-flexible utilization of sensing devices, an emergent trend is
to populate hardware boards with several elementary sensors. This trend originated
from the capabilities exposed by smartphones where a set of well defined sensors can
generate a wealth of data (by means of edge AI software) exploitable by many different
applications [10]. There seems to be the possibility to apply similar mechanisms to other
implementations of Internet of Things. For instance, by populating hardware devices
with several elementary sensors, the resulting boards are said to be “general purpose”
since they are able to collect a wide range of features. Noise, temperature, humidity,
illuminance and many other aspects can be measured and collected by just one single
board. Under a simple perspective, these features can approximate/resemble the human
sensing capabilities. From an analysis of these features some characterizing data (e.g.
movements, opening of doors, etc.) can be derived by means of the application of
AI algorithms [7]. Instead of using one sensor for one specific measure (single purpose
approach) there is the possibility of capturing new measurements by means of algorithmic
solutions. In principle, these boards can be placed everywhere in the environment and
still sense many aspects from it.

Hence, the approach that follows from this new way of thinking is that, ideally, it is
possible to digitize a given environment by collecting many of its facets using just one
board equipped with simple sensors. This method is proposed in literature as general-
purpose sensing [7]. The benefits of using it are many: (i) reduces deployment and
maintenance costs; (ii) reduces the hardware components cost; (iii) reduces the aesthetic
and social costs [11]; (iv) it moves the complexity from hardware to software.

The huge amount of data gathered from the environment can then be used by modern
Artificial Intelligence (AI) techniques to learn patterns about the external world. In fact,
the fuel of Machine Learning (ML) algorithms is data, which allows to train increasingly
powerful models. Therefore, the current trend is not only to provide a new sensing
method to “listen” to the environment, but also to power up this feature by moving
complexity to the software layer [12]. General purpose sensing along with AI could
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CHAPTER 2. STATE OF THE ART

Figure 2.1: General Purpose Sensing and AI

bring to a new generation of systems in which they are able both (i) to understand
stimulus coming from the external world and (ii) and act based on them (Figure 2.1).

Although this new approach seems to work fine in small contexts (such as smart home
[7]), it needs to be tested in large and complex environments such as industrial plants or
smart cities. Moreover, in practice the general purpose sensing technique didn’t reach a
definitive way to work, since it still has to find the right set of sensing capabilities that
may be employed to serve the wider range of application contexts.

Computer vision, thanks to improvement in video-based sensing, is close to achieving
the objectives set by general-purpose sensing. Cameras allow the possibility to gather
a huge amount of information, which can be further analyzed with the newest pow-
erful Deep Learning (DL) algorithms. Thanks to techniques such as object detection
and image classification, boards equipped with cameras could use video streams along
with data acquired by sensors to predict complex events that fully describe the envi-
ronment of interest. The issues with cameras, however, is to preserve the privacy of
people, in fact video analysis should not be invasive and should not be used to derive
and acquire personal information. The right trade-off between information capture and
privacy assurance is a major issue.

While providing several pieces of information, cameras also acquire sensitive data
which could lead to privacy issues. In fact, people do not like the fact that their data is
stored in an unknown server. Several attempts have been performed to overcome these
issues such as filtering the video stream to mask out sensitive information [13], but the
most innovative one is to perform computer vision sensing at the edge of the network,
i.e. as close as possible to end users. Exploiting EdgeAI, data doesn’t need to be stored
since they are processed and analyzed in real-time [14].

2.2 Digital Twin

According to Kritzinger, et al. [15] there are plenty of definitions of DT and there is not a
common one, since it depends on the research’s focus area. The term “Digital Twin” - as
a digital equivalent to a physical object - appears for the first time in a Product Lifecycle
Management (PLM) cours a the University of Michigan by Michael Grieves [16] in 2003.
In his paper, Grieves, presents a three-dimensional concept model of a DT, where the
main actors are the physical object (PO) (in the real space), its virtual counterpart -
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i.e. the logical object (LO) - (in the virtual space) and the data/information connection
between them. Hence the Digital Twin itself, is nothing but the digital side (LO) of this
model, which continuously interacts and receives information from sensors placed on the
real object. Moreover, it can respond to environmental stimuli using actuators.

Later on, the rise of Industry 4.0 and the further developments in the IoT field - such
as remote sensing, data ubiquity, automation and actuation capabilities - led companies
and institutions to focus on manufacturing and smart objects. On the face of it, LNS
research defines a DT as “an executable virtual model of a physical thing or system”
[17]. They highlight that each physical thing is defined in the real space by its own
attributes and characteristics. Both of them can be captured and portrayed into the
virtual space, creating the object’s logical counterpart.

As it is pointed out in [8], DTs present several properties including (i) represen-
tativeness, (ii) contextualization, (iii) modeling, (iv) reflection and (v) entanglement.
Each of them contributes to describing the fundamental features of the DTs.

This property allows logical objects to reflect exactly the real ones in a digital domain,
paving the way toward new applications. In fact, both traditional computer-aided design
(CAD) and advanced sensor-enabled IoT systems cannot compare with the real DTs’
power, since (i) CAD lives in the simulation worlds, without interacting with the real
objects; and (ii) advanced IoT systems - although they acquire real-time data from
sensors on the field - don’t favor interaction between the components and the full process
life cycles.

Figure 2.2: Global digital twin market size in the year 2020 and 2025, by industry (in
billion U.S. dollars) [18].

Increasingly cheaper constrained devices, with high computing capabilities, are push-
ing several industries to invest in DT and its technology. As mentioned by Perrot, et
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al. [19], (i) automotive and aircraft sectors can not do without these tools, since they
are the key actors for pursuing innovation; (ii) energy sector takes advantage of DTs to
improve and monitor both their plants and their production; (iii) health-care is using
these technologies to develop IoT solutions able to heal chronic diseases; (iv) smart cities
exploit the digital world to improve several activities, from traffic management to pollu-
tion monitoring; and (v) manufacturing adopted digital twins to boost productivity and
efficiency. By 2025, the global DT market size is about to grow exponentially, reaching
over six billion U.S dollars in the manufacturing sector [18] (Figure 2.2).

2.3 Digital Twins and Signatures

LOs are able to faithfull represent POs in the virtualized space because they can capture
the main POs’ characteristics, i.e. those features that describe real objects in the appli-
cation context. These aspects are also known as signatures, since they uniquely represent
that specific thing. For instance, each vehicle has its own engine sound (even electric
cars for safety reasons [20]), emits a certain number of pollutants (COx and NOx among
others [21]) and has its own geometry (captured by computer vision). The combination
of the three of them, could be used as a signature able to identify the specific kind of
vehicle (and even the model). Moreover, by collecting the sound of engines that need
maintenance, it is also possible to predict malfunctioning of vehicles avoiding dangerous
situations.

Therefore, by acquiring signatures from POs, DT became a repository which stores
and then provides APIs, allowing third party applications to access this information.
AI and ML models could be trained using signatures coming from LOs, improving their
inferences. In fact, detecting and classifying a specific vehicle’s model in a large environ-
ment such as smart cities, turns out to be very challenging. There are plenty of vehicles,
some of them similar to each other, even for the most accurate object detection model
it is hard to provide precise predictions. Using unique vehicle signatures could overcome
this issue. Figure 2.3 shows how data are gathered from the POs and stored into a
repository which can be used to manage LOs. In this way each LO is able to reflect the
status data of the corresponding PO, i.e. keeps active the remote virtual link with the
real object (entanglement).

2.4 Digital Twins for large environment: Smart Cities

The concepts of Digital Twin and Smart Cities go hand in hand. Cities are nothing but
complex living systems, or rather a system of systems [22] in the real world. Managing
them has become really hard due to the population growth [23]. Digitalization (by
improving software and hardware capabilities) is the only key to solve the increasingly
high demand which big cities as well as suburban or rural areas have to face. DTs
represent an effective means to achieve this level of innovation as fast as possible. In
fact, DTs are basically virtual evolving models of the physical world. The improving of
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Figure 2.3: Digital Twins and signatures overview

sensing capabilities - due to the rise of IoT - along with the new abilities to manage and
program a virtualized space, can favor this transition toward digitalization.

Although the initial focus by researchers about DT and its applicability was in the
smart manufacturing sector, currently they are trying to exploit DTs representations for
targeting many different applications domains. However, Nochta, Wan et al. [24], point
out that when dealing with complex and heterogeneous systems, DT applications have
to take into account several information, such as the urban and socio-political context,
to produce value for citizens. The authors highlight the need for guidelines, or rather
a framework able to direct Digital-Twin-based solutions toward workable systems and
useful results.

Back in the early 2000s, the BIM (Building Information Modeling) technology [25]
was introduced by the architecture, engineering, and construction (AEC) industry to
bring innovation by reducing architectural projects costs and delivery time, enhancing
digitalization and softwarization of urban areas. Using BIM, each single building is de-
signed virtually, using 3D computer-aided design (CAD), and tested in order to achieve
the projects’ specification. Then, it is built physically in the real world [26]. Projects
continue to “live” virtually for further analysis with the aim of improving and maintain-
ing the physical building. The availability of new models or techniques can be readily
used and the old buildings can be tested with the new solutions. By exploiting remote
sensing in the physical building and by favoring the communication with its digital rep-
resentation, researchers came up with the idea of Building Twin [27]. Key enablers in
this approach are data, both static and dynamic, coming from several sources. Data
manipulation and checking have the goal of gathering as much information as possible
from the physical environment and to use it for flushing out potential issues or design
flaws in the project. Data represents the bridge between the physical building and its
digital counterpart (Figure 2.4). The latter along with modeling, bring knowledge to
the softwerized design and implementation beyond the single building.. The so-called
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Figure 2.4: Real building and its Digital (Building) Twin [28].

Building Twin can now completely understand its surroundings, interact with either
third-party applications or citizens and use the information sensed to adapt themselves
to human needs.

BIM technology and DTs can also be applied to other cities’ backbone, such as the
transportation infrastructures [29]. The idea is the same as the one used for the Building
Twins, i.e. to develop a 3D CAD model using BIM; to collect as much data as possible
from the physical infrastructure (bridge, local road, highway, railway. . . ) through
pervasive sensing; and to guarantee the communications between the digital and the
real object. Dealing with the DT of a specific infrastructure led to several benefits, such
as:

• monitoring continuously and remotely the infrastructure status and its issues;

• performing some simulations to avoid traffic congestion and to improve viability
[30, 31];

• performing further forecasting to avoid structural errors that could threaten citi-
zens life;

• monitoring the life cycles of infrastructures to program maintenance intervention
[32].

Kumar, S.A.P., Madhumathi, R., Chelliah, P.R. et al. [31], presents in their paper
a “digital twin-centric approach for driver intention prediction and traffic congestion
avoidance”. Their aim was to offer a futuristic view of developing viable, self-learning,
and automated traffic management systems. The solution proposed consists in (i) gath-
ering real-time data from the current road and vehicle, forwarding them to fog and
edge devices for data analytics; (ii) predict driver behavior and intention using accurate
machine learning and deep learning algorithms; (iii) using data lake in the cloud for stor-
ing historical information. Several sensors and cameras are used to capture situational
details from the environment, building a DT for the road and a DT for each vehicle.
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Hence, through the proposed Virtual Vehicle model they perform the “driver intention”
prediction.

Research is moving toward building a huge system of systems, able to manage each
single subsystem - Building Twins, Intelligent Transport Systems. . . - and to promote
both the integration and the interaction between them. However, this potential has
not been fully developed thus far. Up until now, the most advanced implementation of
DTs in smart cities comprends the geospatial mapping of cities’ infrastructures to 3D
CAD models - using BIM technology - along with real-time data coming from either
existing cities’ data lake or the environment. For example, the city of Zurich developed
a 3D spatial, digital model of the city itself, providing one of the first city-scale Dig-
ital Twins of the entire urban area [33]. The project - named “Smart City Zurich” -
consists of a common framework for all the numerous IoT projects that have already
been implemented throughout the past years, with the aim of creating a digital city’s
counterpart to simulate urban planning in climate change. Like Zurich, also Munich
[34], Helsinki [35], Rotterdam [36] and Rennes [37] are moving toward the city-scale DT.
On the other hand, other projects such as Virtual Singapore [38] are intended to provide
a 3D digital platform for citizens and researchers that works as an enabler for users to
develop sophisticated applications which can solve the emerging and complex challenges
that megacities are forced to deal with. The city-nation of Singapore was the first to
point out the difference between mapping and twinning: the digital twin of the city is
constantly up to date with real time data.
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Chapter 3

Background

3.1 Hardware Components

Nowadays, there are plenty of powerful hardware devices available on the market. Choos-
ing the right component could truly affect the project’s success. Therefore, it is fun-
damental to have an overview of all the available devices, studying their specifications
along with their advantages and drawbacks, and how they could fit into the project.
However, this technological area rapidly changes. The proposed system tries to use the
best solution currently available, taking into account that there is no assurance that,
in a short time, better devices will appear. In this chapter I will present the hardware
components chosen for this thesis.

3.1.1 Sensor Boards

According to the system’s requirement, environmental and pollution data need to be
gathered from the environment. In order to do that two different sensor boards have
been selected.

The first one is the Gravity MEMS Gas Sensor Board, developed by DFRobot,
which supports the detection of various gas concentrations like CO, C2H5OH (Alcohol),
H2, NO2, NH3 thanks to the built-in MiCS-4514 sensor, and integrates various gas
concentration conversion formulas in the code to facilitate the testing and usage for
end-users. Thanks to its I2C digital outputs and its 3.3 5.5V wide voltage inputs, the
module is compatible with several boards, such as Arduino, ESP32, Raspberry Pi and
so on. It is able to work between -30 and 85 °C and it features the following measuring
range:

• 1 – 1000ppm(Carbon monoxide CO )

• 0.05 – 10ppm(Nitrogen dioxide NO2)

• 10 – 500ppm( Ethanol C2H5OH)

• 1 – 1000ppm(Hydrogen H2)

• 1 – 500ppm(Ammonia NH3)
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(a) Google Environmental Sensor Board (b) Gravity MEMS Gas Sensor Board

Figure 3.1: Sensor boards

• > 1000ppm(Methane CH4)

Thanks to the DFRobot MICS Library it is pretty easy to extract and process raw
data coming from the sensor using either I2C protocol or analog values.

On the other hand, to gather environmental parameters, the Google Environmental
Sensor Board has been chosen. The latter is a general purpose sensor board able to
extend sensing capabilities of single-board computers such as Google Coral Boards family
and Raspberry Pi. In order to do that, it can be attached to the controller’s pins thanks
to the 40 equipped female connectors. It acquires atmospheric data from the environment
such as (i) temperature; (ii) humidity; (iii) barometric pressure; (iv) and light level.
Moreover, the Environmental Sensor Board supports UART and I2C communications,
as well as Pulse Width Modulation (PWM) technique. In addition, the board allows
connecting other sensors through four Grove connectors. To program the board one need
to install and therefore use the apposite python library: coral.enviro.board.

3.1.2 Cameras

In order to perform computer vision, i.e. the vehicle detection task, the system needs a
camera module able to capture real-time video streams. The choice fell on Google Coral
Camera. The latter is a 5 megapixel camera module which can be connected to Coral
Boards family, and other boards as well, through MIPI-CSI interface. With a dimension
of 25mm x 25mm, It provide several features, such as:

• auto exposure control;

• auto white balance;

• auto band filter;

• auto 50/60Hz lumination;

• auto black level calibration.

It is important to point out that this product has been chosen for continuity reasons,
since a high percentage of devices involved in the project are developed by Google Coral.
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Of course, other camera modules can be used, even those with USB connectors such as
the ones used with personal computers.

Figure 3.2: Google Coral Camera module

3.1.3 ESP32 WROOM 32D Board

The ESP32 family belongs to Microcontroller units (MCU), which are computer board
platforms with CPU, memory, busses and built-in peripherals indispensable for reading
connected sensors or driving actuators. In particular, the ESP32 WROOM 32D module,
integrates Wifi, Bluetooth and Bluetooth Low Energy (LE), by targeting a wide range
of applications, from dealing with wireless sensor networks till managing complex tasks
such as voice encoding, music streaming and MP3 decoding.

This board MCU can be programmed on Arduino IDE, using a C/C++ library called
Wiring which makes it much easier to work with other input/output hardware modules
(sensors, actuators, etc.) via software. Moreover, by using proper libraries on the IDE,
it is possible to connect the board to a router, i.e., to the world wide web, enabling
low-latency communications for processing raw data coming from the environment and
forwarding them to proper network nodes.

Figure 3.3: ESP32 WROOM 32D Board

3.1.4 Google Coral Dev Board

The Coral Development Board, is a new platform developed by Google able to bring
the power of AI into constraint devices. Deeper, the Dev Board, is a single-board
computer (just like Raspberry Pi) equipped with an Edge TPU (Tensor Processing Unit),
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which allows these devices to achieve significantly higher performance than standard
CPUs. This is due to the equipped Google System on Module (SoM) which gives to
the board enough power for running fast ML inference. Moreover, Google Coral Dev
Board has both an embedded CPU and an embedded GPU, is equipped with 8 GB of
flash memory and 1/2/4 GB of RAM (depending on the version chosen). Moreover, the
development board supports wireless connectivity, both Wi-Fi and Bluetooth 4.2. In
fact, it is equipped with a Wi-Fi 2x2 MIMO module able to support several standards:
802.11b/g/n/ac for either 2.4 or 5GHz communications.

Figure 3.4: Google Coral Dev Board

The core component of the while board is the Edge TPU, which is placed at the heart
of the device. According to Google’s benchmarks [39], it is able to perform 4 trillion
operations (tera-operations) per second (TOPS), dissipating just 2 TOPS per watt. To
deal with all this computational power at the edge, Google developed TensorFlow Lite,
a toolkit derivative of the well known TensorFlow library, that performs complex deep
learning model, such as object detection, sound recognition, image classification, on
Coral constraint hardware, taking advantage as much as possible of the equipped TPU.

Coral Dev Board runs Mendel Linux, a lightweight operative system branch of Debian
Linux. The latter has been optimized to make it the perfect OS for embedded devices.
Although one can connect a keyboard (thanks to the USB connector) and a monitor
(using the HDMI 2.0a interface), there is no user interface, just a debian linux shell
which relies on a debian file system. Mendel Linux comes with all the necessary libraries
and software packages a developer needs to work with the board, i.e both python and
C++ libraries, Edge TPU API and runtime. In order to connect safely to the board
using SSH/mDNS, Google developed Mendel Development Tool (MDT). The latter a the
command-line tool that allows the communication with all the devices running Mendel
Linux, including this board. Using MDT, it is possible either to transmit or download
information directly from/to the board (as long as it is wired to the computer which is
transmitting/downloading).
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Figure 3.5: Mendel Linux block diagram [39]

3.2 IoT Technologies and Tools

In this section the main technologies used for the implementation of the proposed system
are introduced and analyzed. For each of them, its principal features and characteristics
are described by motivating its adoption for the final implementation. Table 3.1 sums
up all the technologies employed.

Purpose Technology

Communication MQ Telemetry Transport (MQTT) (3.2.1)

Dispatching Node-RED (3.2.2)

Telemetries Data Storage InfluxDB (3.2.3)

Data Displaying Grafana (3.2.4)

Digital Twin Eclipse Ditto (3.2.5)

Edge AI TensorFlow Lite (3.2.6)

Table 3.1: List of all the technologies used divided per field of application

3.2.1 MQ Telemetry Transport Protocol

MQ Telemetry Transport (MQTT) [40] is a low bandwidth communication protocol
widely used in the IoT field. It was released for the first time by Andy Stanford-Clark
from IBM and Arlen Nipper in 1999. Thanks to its ability to enhance Machine to
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Machine (M2M) communications and the wide spreading of Wireless Sensor Networks
(WSNs) , MQTT protocol became very popular during the 2000s.

MQTT implements the publish/subscribe architectural pattern (see Figure 3.6), that
is an asynchronous communication mechanism in which two or more clients, defined
publishers or subscribers based on their role within the system, communicate through a
central server that routes messages. The key actors in MQTT communications are the
following:

• Topic - is an endpoint that connects clients during the communications. Is an
UTF-8 string that the publisher should know to send messages to subscribers.

• Publisher - is a client which sends (i.e. publish) messages using a specific topic.
It has to know the address of the broker for sending messages in the proper way.

• Subscriber - is a client which receives messages sent by publishers. It subscribes
on a specific topic to the broker. Each time a publisher sends a message on that
topic, the subscriber receives that message.

• Broker - is the central server which manages topics and communications between
publishers and subscribers. It keeps track of all the clients subscribed to specific
topics. As soon as it receives a message along with the topic from the publisher,
it checks which clients are subscribed to that topic. Finally, it forwards messages
to the proper subscribers.

Figure 3.6: Publish/Subscribe model overview [41]

MQTT supports three different Quality of Service (QoS) levels both for publisher
to subscriber and broker to subscriber communication. One can choose among the
following:

• QoS 0 (at most once). The publisher sends a message to the broker without
receiving the ACK.
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• QoS 1 (at least once). The publisher sends a message to the broker, then stores
it temporarily waiting for an ACK from the broker. If it doesn’t receive the ACK
within 10 seconds, the publisher sends the packet again.

• QoS 2 (exactly once). Implements a 2-step ACK process. The sender, whether it is
the publisher or the broker, sends a packet in the direction of the receiver, broker or
subscriber respectively, and subsequently keeps temporarily the message pending
the PUBREC. If it doesn’t receive it, the message is sent again, with the DUP
(duplicate) flag enabled in the header. Once the PUBREC is received, the sender
sends a new packet, of type PUBREL, containing the initial PUBLISH packet id.
This packet indicates to the receiver that the sender is deleting the initial message.
The receiver replies with a PUBCOMP and thus closes the communication, waiting
for a new packet.

QoS 2 requires more time than the other levels. Either way, the publisher has no
guarantee that the subscribers actually receive the message. For that purpose, one can
use the retain features which ensure that messages are sent and received.

Nowadays, several lightweight protocols are available on the market. Nevertheless,
in this work of thesis MQTT has been chosen among other protocols for several reasons:
(i) energy efficiency, suited for low power device; (ii) simplicity and flexibility; (iii) huge
number of libraries and tools which implement the protocol; (iv) supports low bandwidth
and fast communications.

3.2.2 Node-RED

Node-RED [42] is a powerful development general purpose tool for building Web-of-
Things applications. It exploits the flow-based programming (FBP) [43] paradigm for
wiring hardware devices along with API and web services. Node-RED was written in
JavaScript as a web-based tool so as to be cross-platform.

The main concepts on which Node-RED is based on are: (i) node and (ii) flow. A
node is an atomic element, equipped with one or more input/output ports. Most of the
nodes in the Node-RED’s palette implements a black box model: the code implemented
inside the node is most of all unknown, instead the input/output specifics are available.
Node-RED provides a wide range of nodes in the palette, each of them adds features to
the developed flow. Moreover, the tool provides an integrated market from which one
can download and add nodes to its flow.

20



CHAPTER 3. BACKGROUND

Current legacy of nodes supported by Node-RED provide several functions, such as:

• debugging using the debug nodes;

• signal triggering using the trigger nodes;

• communication services, which endors the most known communication protocols
(HTTP, MQTT, serial, radio, AMQP, etc.);

• condition operation, i.e. filtering, switching, etc.;

• data persistence.

Nodes are connected one to another using wires, i.e. port channels from the output
port of one node to the input port of the other node. To transmit information, wires
bring within them messages from the output to the input port of the nodes. Messages
are nothing but JavaScript object which have two main fields:

• topic - represents the message’s title;

• payload - contains data, which could be text or encrypted information.

Nevertheless, it is possible to add a new field to the msg object, depending on the
programmer’s needs. A set of nodes, wired together, builds a flow. Several flows can
communicate with each other using link nodes. Another important feature of Node-RED
is the variables management. A variable can be instantiated in the function nodes and
they can be of three types, depending on their visibility:

• context - it is the default level, limits the variable’s scope to the node it has been
created;

• flow - allow the variable instantiated to increase its scope to all nodes within the
flow;

• global - allow the variable to be visible also in other flows, not only in the one
instantiated.

Variables can be used as messages as well to connect nodes and flows together.
For this work of thesis the choice fell on Node-RED since it is a powerful tool, easy

to use and suited for building IFTTT (If This Then That) solutions. Its ability to
wire together web services (such as the other one chosen for this thesis) and hardware
devices (Sensor Boards, Google Coral Dev Board, etc.) guarantees to develop and build
a complex, scalable and available system, which makes this tool perfect for the aim of
this thesis.

3.2.3 InfluxDB

InfluxDB [44] is a highly performing open source Time Series Database based on a SQL-
like query language called InfluxQL. It has built-in time-centric functions for querying
a data structure composed of measurements, series, and points. Data in InfluxDB is
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organized by “time series”, which contains a measured value, like “cpu load” or “tem-
perature”. Time series have zero to many points, one for each discrete sample of the
metric. Each point consists of several key-value pairs called the fieldset and a timestamp.
When grouped together by a set of key-value pairs called the tagset, these define a series.
The difference between tags and fields is that tags are indexed, which means that queries
on tags are faster compared to queries on simple fields, which are not indexed. Finally,
series are grouped together by a string identifier to form a measurement. Conceptually
you can think of a measurement as an SQL table, where the primary index is always
time.

InfluxDB offers so-called retention policies. A retention policy describes how long
InfluxDB stores data (DURATION) and how many copies of that data are stored in the
cluster. The default retention policy with infinite duration and no replication is called
”autogen”, which has an infinite duration and a replication factor of 1.

In this thesis, to use a time series database allows to keep trace of telementries during
the time. By storing the value along with a timestamp allow to perform temporal query
in an easy way, which can be used for further analysis and visualization.

3.2.4 Grafana

Grafana [45] is an open-source web application for interactive data visualization
and analysis. It allows inspection of info-graphics and alarms, unifying various data
sources. Since it features a native integration with the most known time series databases
(InfluxDB, Prometheus, etc.) and monitoring platforms (Sensu, Icinga, etc.), Grafana
is one of the most important tools for monitoring tasks and therefore for data scientists
and researchers.

Grafana was developed by Grafana Labs and it splitted in frontend and backend,
written in Typescript and Go respectively. Go is the Google brand new programming
language, which improves performance in accessing huge datasets and processing tons
of data. Hence, the latter is a good feature which makes Grafana an attractive choice.

Data is visualized on Dashboards. Each dashboard contains one or more panels.
Once the data source is connected to Grafana service, the creation of these panels can
be done through interactive query builders with the minimum programming effort. Every
panel could be connected to different data sources, offering a way to unify data in just
a single user-friendly dashboard. All the information about dashboards ( i.e metadata,
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properties, designing elements, etc.) are stored into JSON objects. Those objects can
be accessed through the dashboard’s settings.

Data and telemetries can be displayed in panels using several visualization options,
so users can choose the solution which fits better for their visualization task. Table 3.2
shows a list of visualization sections and types available on Grafana [46]. Each panel can
then be modified according to users’ will, for instance one can completely personalize its
graph by choosing the color of the panel, the shape of the values’ line, the text on the
both axes, etc.

Options Types

Graphs & Charts Time series, State timeline, Bar chart,
Histogram, Heatmap, etc.

Stats & Numbers Stats, Gauge, Bar Gauge

Misc Tables, Logs, Traces

Widgets Text panel, Alert, Dashboard list

Table 3.2: Visualization panels type in Grafana [46]

For all the features above mentioned, Grafana reveals to be the perfect choice to
solve the monitoring tasks of this work of thesis. It offers, indeed, a native integration
with InfluxDB, hence all the environmental and pollutant data can be stored and then
visualized on proper Grafana Dashboards with the minimum programming effort. More-
over, Grafana is also good looking and user friendly, which is an important feature that
improves the user experience in programming complex monitoring panels.

3.2.5 Eclipse Ditto

Eclipse Ditto is a framework to interact with IoT devices by providing the Digital
Twin pattern. It presents itself as an IoT middleware able to mirror physical devices as
digital representations in the cloud.

Nowadays there are plenty of different communication protocols and device types
available on the market. Eclipse Ditto provides a way to access them by a set of resource-
based API which allows to abstract the complexity of dealing with different devices and
connection types. A single device is structured into its main aspects and functionalities
and is equipped with a public API that helps to access each single object’s features.
Ditto also provides a set of policy rules which can be modified by developers and define
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how objects interact with each other. For instance, is it possible to point out which
are the objects that can access a specific device’s feature and with which operational
mode (read-only, admin privileges, etc.). In this way, Ditto guarantees that devices are
accessed only by authorized objects or users. By exploiting this approach, a single device
is turned into a standard web service which can be queried and managed like any of the
other services within a third party application.

A digital (virtualized) object in Eclipse Ditto is nothing but a JSON object made
of devices’ attributes (metadata) and features. Objects metadata are information about
the device manufacturer, the geographic location, the software version, etc. which can
be useful to query devices in the Digital Twin repository. Features instead, contains
values received by the physical device such as the temperature, humidity, etc. Devices
can be linked to a model, so as to provide a standard way to describe similar objects.

In order to connect a scalable number of devices to the backend, i.e. the Ditto server,
a connectivity layer is needed. Software such as Eclipse Hono or MQTT brokers such as
Eclipse Mosquitto are naturally integrated by the framework, allowing a huge number
of devices to continuously send and update their real-time status.

Figure 3.7: Eclipse Ditto’s high-level overview

In this thesis, Eclipse Ditto is revealed to be the perfect framework for developing the
DT concept. It is an open source software which provides native integration with sev-
eral communication protocols and software as well. Moreover, being an Eclipse project,
supports other projects such as (i) Eclipse Hono and Eclipse Mosquitto for connecting
a huge number of devices; (ii) Eclipse Vorto for describing objects models and struc-
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tures, etc. Hence, such a framework exploits the DT paradigm by adding reliability and
availability to the overall system and by enhancing at the same time accessibility and
connectivity.

3.2.6 TensorFlow Lite

TensorFlow (TF) Lite is a ToolKit provided by TensorFlow 2.0 which enables on-
device ML on embedded, mobile and edge devices. Such kinds of devices usually have
some constraints in terms of memory, power consumption, computational power, etc.
which make it hard to deploy on them either ML or DL models. Hence, TensorFlow Lite
brings optimized ML models for on-device machine learning by addressing 5 principal
constraints:

• latency, since there’s no round-trip to a server and back;

• privacy, since data doesn’t leave the device;

• connectivity, which is not required;

• size, reduced model and binary size for memory space optimization,

• power consumption, to guarantee efficient inference and a lack of network connec-
tions.

In order to reduce models’ size, a TF Lite model is exported in an efficient portable
format, named FlatBuffers [47], which is identified with the extension .tflite. The latter
presents several advantages with respect to the standard TF’s protocol buffer, such as (i)
reduced size, due to the small code footprint and (ii) faster inference, since input data
are directly fed into without performing other packing/unpacking steps. Optionally, a
TF Lite model could also include additional information, i.e. metadata. The latter are
further human-readable models’ descriptions and machine-readable data for enhancing
on-device inference. A TF Lite model can be achieved in the following ways:

• use an existing TF Lite models;

• create your own TF Lite model, by exploiting the TF Lite Model Maker library to
train a model with a custom dataset;

• convert a TF model into a TF Lite model, by using TF Lite Converter.
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For its feature of bringing AI in edge devices and its native integration with Google
Coral Dev Board, TF Lite appears to be the right tool to achieve the objectives of this
thesis. Its ability to optimize on-device ML and DL tasks, by reducing memory usage
as well as the bandwidth and power consumption, is a key point that could enhance the
overall system performance.
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Digital-Twin-based Traffic
Monitoring System

4.1 Goals and Purposes

In order to promote the virtualization of a large physical environment, and therefore to
model the DTs promoting general-purpose sensing approach, the outlined system should
expose the following features:

• gather data from the environment, using several elementary sensors placed on the
environment itself;

• process all the information acquired using low-latency and low-cost communica-
tions;

• store relative information in the database to ensure persistence of data;

• apply early on AI algorithms in order to identify and classify physical objects.

Hence, both system’s hardware and software architecture must be aligned in order to
collaborate with each other to pursue the desired goal. Moreover, the TMS will be
able to detect the specific type of vehicle passing by the observed road, and send the
information acquired to the backend logic for the DT creation and management. To add
this feature, the system should implement also some deep learning algorithms able to (i)
detect the vehicles; and (ii) count them. Since the system design is using video capture,
it is necessary to apply real-time inference on a video stream coming from a camera.

In order to reduce the latency and improve system’s performances by moving compu-
tation instead of data, this TMS exploits the concept of Edge-AI [48], i.e. brings the AI
algorithms at the edge. To deploy complex models in constraint devices and to perform
real-time inference as fast as possible, it is needed to use lite ML models. In fact, both
the memory and computing power of edge devices are often constrained. Models can be
optimized in a variety of ways to allow them to run within these restrictions. Further-
more, several enhancements make it possible to leverage specialized hardware for rapid
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inference. Figure 4.1 represents the differences between AI at the edge and classical AI
solutions in the cloud.

Figure 4.1: Cloud based approach vs Edge AI [49]

Of course, shrinking the model size leads to some accuracy drop, but it allows the
model to occupy less storage space and use less RAM when it runs, reducing the inference
latency during its execution. The latter could also impact the power consumption, which
for some devices is a critical restriction. Hence, by exploiting the concept of Edge-AI,
the TMS has several benefits such as:

• low-latency communications, by avoiding the round-trip delay of sending data to
a remote server since the model is at the edge;

• low-latency inference, since it uses lite ML/DL models;

• high availability and reliability, even in case of no internet connection (all the
computation is at the edge);

• no privacy issues, since data are just processed locally instead on an unknown
server

4.2 Hardware Overview

The proposed system consists of several hardware devices that work together to achieve
the desired goal, such as:

• two sensor boards - Gravity MEMS Gas Sensor Board for gathering pollutants data
and Google Environmental Sensor Board for gathering environmental telemetries
(Section 3.1.1);

• one camera module - it could be either Google Coral Camera (Section 3.1.2) or a
normal USB Camera for gathering real time video streams;

• one microcontroller unit (MCU) - ESP32 WROOM 32D Board (Section 3.1.3) for
interfacing with the Gas Sensor Board;

• and one development board - Google Coral Dev Board (Section 3.1.4) for applying
complex ML algorithms at the edge of the network.
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The sensor boards are responsible for gathering data concerning both vehicles’ pol-
lutants emitted and environmental parameters in the target space. Since all the GPIO
pins of the Coral Dev Board are used by the Environmental Sensor Board, it was nec-
essary to employ another MCU in order to gather values from the Gas Sensor Board.
Once processed, raw data is forwarded toward an MQTT Broker to the controller service
(NodeRED) in the form of structured data, i.e. where all IFTTT (If This Then That)
rules are executed. Figure 4.2 shows the proposed hardware configuration.

Google Coral Dev Board

real-time video stream

Coral Camera

raw data

Gravity MEMS Gas Sensor

telemetries

Environmental Sensor Board 

ESP32 Board

MQTT  
Messages

MQTT  
Messages

Figure 4.2: TMS hardware overview

4.3 Software modules

The intelligence of the Traffic Monitoring System consists of several software modules
spread all over the network architecture. The Figure 4.3, shows a high level overview of
all the technology used.

Since the goal is to exploit Edge AI, the scripts which perform Vehicle Detection
and Counting, must be deployed as close as possible to the physical environment, i.e.on
the Google Coral Dev Board. The Coral Camera, the Environmental Sensor Board as
well as the Gas Sensor board and the ESP32, must also be deployed at the edge of the
network, so as to gather real-time telemetries needed directly from the field.

As regards other modules, such as the backend logic (NodeRED) along with data
storage (InfluxDB, MongoDB . . . ) and communication services (MQTT Broker) can be
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Figure 4.3: TMS high level view

deployed following three main techniques:

• cloud-only approach, based on the traditional cloud-centric implementation of ap-
plications where all modules run in data centers;

• edge-only approach, in which all modules run in the edge devices;

• hybrid-fog approach, in which some of the modules of an application run over
different fog nodes.

Regardless the technique used, all the information acquired from the physical envi-
ronment are then used either to create or manage DTs: (i) the one who represents the
specific road in which the hardware devices are placed (R-DT); and one DT for each
specific type of vehicle detected (V-DTs).

4.3.1 Communication

In order to either forward data and information or coordinate the work among the com-
ponents, all software modules involved in the system operation exchange messages with
each other continuously. The latters are sent/received using two different communication
protocols:
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• HTTP, used for request/response communications between the system’s controller
(NodeRED) and Eclipse Ditto.

• MQTT, used to send telemetries and other informations (such us vehicles detected,
their current count, control messages, configuration messages) to a MQTT broker,
which forward them to all the subscribers;

More in general, for sending telemetries it would be better to use MQTT over HTTP.
In fact, it has been proved by professors Tetsuya Yokotani and Yuya Sasaki in their
paper [50] that MQTT performs better in the IoT field than HTTP. On the other hand,
to create, delete, manage and fetch multiple entries, the classical client-server approach
goes the most.

One of the most important modules in the whole system’s architecture is the MQTT
Broker service. Since MQTT follows the publisher/subscriber paradigm (see Section
3.2.1), the broker is in charge of keeping information about all the messages’ topics used
by the system and the mapping between them and all the subscribers. As soon as the
publisher sends a message on that specific topic, the message broker forwards it to all
subscribers (which could be also just one node). In this TMS the MQTT broker is
implemented using Eclipse Mosquitto [51], a lightweight, open source message broker,
suitable for any device, from large and powerful servers to constrained boards with a
limited computational power. The MQTT clients instead, are implemented as follow:

• on the ESP32 board through the PubSubClient library [52];

• on Google Coral Dev Board through Eclipse Paho library [53];

• in NodeRED through MQTT nodes.

As regards HTTP communications, Eclipse DITTO provides a set of REST API, by
promoting secure RESTful communications between the server and multiple clients. In
this way, the NodeRED service can easily either fetch or update DTs status information
by building HTTP requests and processing the responses received. All these actions are
possible thanks to HTTP nodes available on NodeRED’s palette.

4.3.2 Data Persistence

In order to guarantee data persistence, this TMS uses two different NoSQL databases:
InfluxDB and MongoDB. Each of the two has its own role inside the architecture.

Even if the TMS should be reliable and always available, to increase the robustness of
the system is better to save the status of the DTs in the case of an error which leads the
system to stop. In fact, when the DITTO server is shutted down, all the info about DTs
is lost. To overcome this issue, each single attribute and feature of DTs can be stored in
the form of JSON objects inside a NoSQL database such as MongoDB [54]. Basically,
during each system start-up, the backend logic firstly checks if a R-DT with a given
things id exists. If yes, then a R-DT is created from its last status update, otherwise a
new default R-DT is created and stored both in Eclipse Ditto and MongoDB server. In
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the proposed system the status is stored in a collection named road dt which belongs to
a database instance called TMS DB.

To store real-time environmental data, an InfluxDB (see Section 3.2.3) service is
used. Being a time-series NoSQL database, allows to track telemetries over the time.
One of the most important features of InfluxDB is that it is possible to set up a per-
sonalized retention policy. A retention policy describes how long InfluxDB stores data
(DURATION) and how many copies of that data are stored in the cluster. The default
retention policy with infinite duration and no replication is called ”autogen”, which has
an infinite duration and a replication factor of 1.

The proposed system relies on a database called MONITORING STATION. The
latter has six measurements, such as: temperature, humidity, barometric, illuminance,
CO and NO2. Each point has a fieldset composed by two key-value pairs:

• location (string) - which define the room in which the board is placed;

• value (float) - which is the value coming from the sensors for that measurement.

Figure 4.4: Measurements in the database MONITORING STATION

Moreover, the MONITORING STATION has a retention policy called a year with
a duration of one year (52 weeks), so as to store data for one year. Since records are
not so heavy, it is important to keep data for a large amount of time to ensure Big Data
frameworks to analyze them and to use them as input for their deep learning algorithms.

4.3.3 Data Visualization

System’s hardware devices, along with their software modules, continuously acquire and
store telemetries coming from the environment. While machines are pretty comfortable
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with dealing with a huge amount of raw data, human beings are not. In order to
make sense to all the information gathered and consequently transform numbers into
tangible concepts, data needs to be visualized. To achieve this goal, this TMS makes
use of Grafana service (see Section 3.2.4). The latter displays data in different panels,
built with its interactive query-builder, inside one or several user-friendly dashboards.
Thanks to the native integration for InfluxDB, it is possible to link precise measurement
to configurables panels. These panels receive and display real-time data as soon as they
are stored into the proper database instance.

For this TMS, by running the Grafana service, two monitoring dashboards are avail-
able:

• Environmental parameters dashboard, which contains panels related to tempera-
ture, humidity, illuminance and barometric data over the time.

• Pollutants Monitoring dashboards, which contain panels that display CO and NO2

values over the time.

Figure 4.5: Environmental pollutants Dashboard (example data)

All the temporal queries are automatically taken by Grafana, so the user can access
important information without any line of code. For instance, if some user wants to
know either what was the amount of CO over the last hour or what was the average
temperature for all days of the previous year, it has only to use a simple drop-down
located inside the dashboard.

4.3.4 Controller and Dispatcher

The whole backend logic of the system has been implemented using NodeRED (see
Section 3.2.2). The latter acts as controller and information dispatcher inside the system
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architecture. In fact it allows the wiring between hardware devices (i.e. ESP32 and Coral
Dev board) and software modules, as well as, the managing of the IFTTT (If This Then
That) rules, thresholds and conditions. As it mentioned in its own section, Node-RED
provides a browser-based flow editor that makes it easy to connect together flows using
the wide range of nodes in the palette.

In this TMS several nodes, both internal and external, have been used, such as:

• communication nodes, for (i) MQTT,and (ii) REST messages;

• data persistency nodes, for storing data both in InfluxDB and MongoDB;

• function nodes, for implementing the system’s logic;

• other nodes, for helping guarantee the right flows’ operation.

Figure 4.6: Partial overview of “DT Management” flow

The whole logic is implemented in four flows, each flow has a precise task:

• DT Management flow - deals with the creation, updating and therefore the man-
agement of all DTs, communicating with Ditto server through REST API.

• Data Persistence flow - deals with storing and updating the R-DTs records, com-
municating directly with TMS DB (i.e. the MongoDB database).

• Vehicle Detection flow - performs the lunch of the scripts and the reception of
messages concerning vehicles detection and counting.

• Sensor Board - receives telemetries coming both from the ESP32 board and the
Google Coral Dev board (through MQTT broker), stores them in the InfluxDB
database, and forwards values to other flows.
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All the flows communicate with each other using the link in and link out nodes,
which creates virtual wires to enable cross-flow-communications. Figure 4.6 shows a
partial overview of the DT Management Flow.

4.4 Models’ Training

There are several ways of generating TFLite models. One can either use a pre-trained
model from the TensorFlow Hub [55] or train its own model using TensorFlow Lite
Model Maker [56], a tool which helps to train a tensorflow model with a custom dataset
exploiting transfer learning. In order to provide an accurate analysis, in this thesis both
pre-trained and re-trained models have been used.

4.4.1 Pretrained Models

Instead of building neural networks from scratch, Google Coral provides a set of pre-
trained models for object detection, i.e. architecture which have been already trained on
a huge dataset, able to solve the object detection tasks. Most of the pre-trained models
have been trained using the COCO (Common Object in Context ) dataset [57], which
contains 90 classes of objects. Using such models allows programmers to avoid models’
training, and therefore to save time and GPU power. As a matter of fact, most of the
object detection tasks can be solved by using pre-trained models, since they are able to
detect the most common objects. The most suited architecture for either mobile or edge
devices is MobileNet. The latter uses depth wise separable convolutions instead of classic
used in standard networks, featuring also a good trade off between latency and accuracy.
Coral suggests two models based on two variants of MobileNet, i.e. MobileNetV1 and
MobileNetV2. Both of the two models allow to perform very fast inferences and are
suited for edge devices. The two models have been trained on COCO dataset and are
able to run also on one or more TPUs, enhancing performances.

Another model strongly suggested by Google Coral is SSDLite MobileDet, which is
a model trained on COCO datasets but with a different architecture, i.e. MobileDet
[58]. The latter allows better performance in terms of accuracy rather than MobileNet
architecture, but not in terms of latency. In fact, models trained using a MobileDet
architecture, are on average slower than the ones trained on a MobileNet architecture.

The drawback of using pre-trained models is that they are able to detect a finite set
of objects, if one needs to extend the model, using them is not the right solution. As
future work (see Chapter 6), the idea is to improve the vehicle detection model by adding
several classes which represent the exact brand of the vehicle. For these purposes, the
pre-trained models are not suited for the proposed system but they can be used both
as a start point to compare models’ performances and as a base for transfer learning to
retrain custom models with a custom imageset.
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4.4.2 Vehicles Datasets

To train models, a huge dataset containing images about vehicles was needed. It was
challenging to find one which guaranteed to detect vehicles even when the camera video
is far from the road. In fact, by taking into account only zoomed images of vehicles, the
issue could be that if the camera is placed far from the roam (such as the normal traffic
cameras), the model fails in detecting the right class, even if it has a good accuracy.

Hence, for the purpose described, two datasets have been used to train the model:

• mini traffic detection (MTD) dataset [59], initially able to detect 8 classes of ob-
ject (Bicycle, Bus, Car, Motorcycle, Person, Traffic light, Truck, Stop sign), then
reduced to 5 (Bicycle, Bus, Car, Motorcycle, Truck) since the focus was on vehicles
classes only;

• traffic image (TI) dataset [60], able to detect 4 classes of vehicles (Bus, Car, Mo-
torcycle, Truck).

The second one contains labeled images about vehicles taken from traffic cameras,
i.e. suited for training a model able to perform correct detections even if the camera is
not too close from the road.

4.4.3 Retrained Object Detection Models

Thanks to the TFLite Model Maker library, several models have been trained using the
two custom datasets described in the previous subsection. The technique used for simpli-
fying the building model process is Transfer Learning, so as to reduce both the amount
of training data and the training time required. The object detection architecture chosen
is the EfficientDet-Lite[0-4] family, which directly comes from the EfficientDet archi-
tecture [61]. Figure 4.7 shows the performances in terms of latency and mAP of the
aforementioned architectures.

The train process was organized in several steps:

1. Prepare the custom dataset - by retrieving data and split them in train, validation
and test set.

2. Choose the object detection architecture - one of the EfficientDet-Lite[0-4] family.

3. Define hyperparameters for training the model - such as epochs and batch size.

4. Train the TensorFlow model - using train data, defining hyperparameters.

5. Evaluate the output model using test data

6. Export the TFLite mode - i.e. the post.trained post-training quantized model
(.tflite format).

7. Evaluate the TFLite model.

8. Test .tfilite output.

During the training, hyperparameters have been modified in order to fine tune the object
detection models. See the section Usage and Results to see the models performances
achieved.
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Figure 4.7: Comparison between the different EfficientDet-Lite architectures, source
[62]

4.4.4 Compiling for Edge TPU

Once trained and converted models to a TensorFlow Lite, i.e. after achieving quantized
EfficentDet Lite models, they need to be compiled for the Edge TPU to be deployed
on it. Basically, when a model is compiled for Edge TPU, it means that all the sets of
operations necessary to execute it are translated in order to run on the TPU. Eventually,
all the supported operations will run on the TPU, while the unsupported ones will still
run on the embedded CPU. Hence, by not compiling the .tflite for the TPU, all the
operations will be executed on the CPU and therefore there will be no gain in terms
of latency-per-inference. This operation is executed by the Edge TPU Compiler, a
command line tool that can be installed directly on Coral’s. It receives a TensorflowLite
model as input and produces a model compiled for EdgeTPU as output. Figure 4.8
shows the process above mentioned in action.

Since Coral’s Edge TPU has a SRAM (Static RAM) of 8MB, a model which uses
more than this amount of memory will badly affect the overall execution’s throughput.
In order to avoid that, the model can be splitted in several segments and executed as one
thanks to the pipelining technique provided by Google Coral. To do that, the Coral’s
documentation strongly recommended using more than one Edge TPU.

4.5 Implementation

A set of the topics addressed by the research have been implemented in this Thesis.
The current implementation consists in a system which creates and manages the DT
of the road in which the hardware devices are placed (R-DT), using detections coming
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Figure 4.8: The Edge TPU compiler in action [63]

from the video stream and telemetries coming from both the Gas Sensor Board and
the Environmental Sensor Board. The AI algorithms developed are able to both detect
vehicles’ classes (Bus, Car, Motorcycle and Truck) and count them as soon as they are
detected. Information concerning real time inference and the current counter are then
forwarded to the fog node which runs NodeRED. The latter collects the information and
uses it to maintain the R-DT (or even multiple R-DTs) stored on Eclipse DITTO.

The architecture chosen for deploying services is hybrid-fog, in which modules are
placed on several nodes spread all over the network:

• on the edge layer are placed all the edge devices which features data gathering and
real-time inference;

• on the fog layer are placed the MQTT Broker and Node-RED service;

• on the cloud layer are placed all servers for Digital Twin managing, data persistence
and data visualization.

The classic cloud-centric approach lends itself poorly to low throughput high reli-
ability connections. Using a fog architecture allows to move computation all over the
network, (i) reducing communication latency and bandwidth consumption; (ii) improv-
ing the overall speed of the system. The proposed system will analyze in the future a
huge amount of data (telemetries and video stream), hence to provide an architecture
able to optimize data processing and displaying is crucial for the final system deployment.

Figure 4.9 shows an overview of the current system’s implementation using a hybrid-
fog architecture.
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Figure 4.9: Software overview of the proposed system’s implementation

4.5.1 MQTT Topic Definition

As mentioned in the previous sections, the MQTT resource addressing takes place using
topics. In this system, each topic (concerning telemetries) is defined using OMA-LwM2M
[64] semantics. Lightweight Machine to Machine is a protocol developed by the Open
Mobile Alliance for remote device management in the Internet of Things and other
Machine-to-Machine applications. The standard defines that a client has one or more
Object Instances, where an Object is a collection of Resources. A Resource is an atomic
piece of information that can be read, written or executed. Object and Resources can
have multiple instances and are identified by a 16-bit integer while Instances are identified
by an 8-bit integer. Objects and Resources are accessed with simple unique URIs:
/objId/instId/resId/. The unique identifiers of the resources are defined through the use
of a semantic standard reported in the OMA Registry.

In this implementation it is possible to distinguish:

• topic, resource identifier (e.g. /deviceID/objId/instId/resId/) shown in the Table
4.1;

• full topic, consisting of prefix and topic.

FullTopics use, in addition to the topic, a prefix. Prefixes are used to avoid the possibility
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of creating any loops between MQTT topics. Within this implementation, three distinct
prefixes will be used:

• cmd, prefix for either issuing commands or ask the state;

• stat, prefix to report either the status or the configuration message;

• val, prefix to report telemetry values at specified ranges

Device (ID) Object (ID) Inst. (ID) Resource (ID) Topic

ESP32 (B01) CO (3300) 0 (0) Value (5700) /B01/3300/0/5700

ESP32 (B01) NO2 (3300) 1 (1) Value (5700) /B01/3300/1/5700

ESP32 (B01) Temp.(3303) 0 (0) Value (5700) /B01/3303/0/5700

ESP32 (B01) Hum. (3304) 0 (0) Value (5700) /B01/3304/0/5700

ESP32 (B01) Illum. (3301) 0 (0) Value (5700) /B01/3301/0/5700

ESP32 (B01) Press. (3315) 0 (0) Value (5700) /B01/3315/0/5700

Table 4.1: MQTT telemetries’ topic definition

In the Table 4.2, are show the topics used to send control and configuration messages,
as well as messages concerning vehicles detected.

Topic Description

tms/script/vehicles With this topic, messages related to the vehicles type
and their current count are published

tms/nodered/counter/reset With this topic, the message to reset the counter
is published

Table 4.2: MQTT topic definition for control and configuration messages

4.5.2 R-DT Definition

In order to define the structure of the R-DT, the official guidelines provided by Eclipse
Ditto have been followed [65]. Each DT must have (i) a thingsId, which identifies
uniquely the thing; (ii) policyId, which links to the policy file containing thing’s autho-
rization; and (iii) a definition, which links the thing to a specific model (i.e. a already
defined structure of features and capabilities). Then, each DT has (iv) attributes,
which provide more detail about the thing, and (v) features, used to manage all data
about that single thing. To follow, the description of all R-DT’s attributes and features:

• Attributes:

– covered area, GeoJSON Object [66] characterizing the area covered by the
device;

– road typology, e.g. local, highway, city street, pedestrian street, etc.;
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– number of lanes, number of lanes divided per running direction;

– obstacles, presence of traffic islands, roundabouts, etc.;

• Features:

– road:

∗ viability status, info about traffic congestion and viability status for
drivers;

∗ road condition, info about the road condition (good status, work in
progress, etc.);

∗ warnings, info about road warnings, e.g. road accidents, road closed,
marketplace, etc.;

∗ , vehicles counter, number of vehicles detected in that road per time
unit, e.g. in the last 15 minutes;

∗ current vehicles, list of vehicles (ID) currently present in the environ-
ment per time unit, e.g. in the last 15 minutes.

– environment:

∗ temperature, value coming from the DT temperature sensor;

∗ humidity, value coming from the DT humidity sensor;

∗ barometric, value coming from the DT barometric sensor;

∗ illuminance, value coming from the DT illuminance sensor;

∗ CO2, value coming from the DT C02 sensor (global);

∗ CO, value coming from the DT CO sensor (global → pollutant produced
by vehicles);

∗ NO2, value coming from the DT NO2 sensor (global → pollutant pro-
duced by vehicles);

Finally, in Ditto, the described structure is represented using a JSON object for each
thing, the Listing 4.1 shows an example of R-DT.

1 {

2 "thingId": "my.iot.suite:my -road",

3 "policyId": "my.iot.suite:my -road -policy",

4 "definition": "my.iot.suite:roadDevice :1.0.0",

5 "attributes": {

6 "coveredArea": { ... },

7 "roadTypology" : "",

8 "lanes": "",

9 "obstacles": ""

10 },

11 "features": {

12 "road":{

13 "propetries": {

14 "viabilityStatus" : "",

15 "roadCondition" : "",

16 "warnings": "",

17 "vehiclesCounter": 50,
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18 "currentVehicles": [

19 ]

20 }

21 },

22 "environment": {

23 "properties": {

24 "temperature": 0,

25 "humidity": 0,

26 "barometricPressure": 0,

27 "illuminace": 0,

28 "co2": 0,

29 "co": 0,

30 "no2": 0

31 }

32 }

33 }

34 }

Listing 4.1: Example of R-DT

4.5.3 Create and Restore DTs

As soon as the system is started up, it checks the last status of the R-DT. In fact,
if Eclipse Ditto service stops working, all the info concerning DTs will get lost. To
overcome this issue, the system stores the R-DT status (by updating single fields) every
time a DT’s change is detected. Records are stored into the TMS DB, precisely in the
collection road dt, and are identified by a unique ID (default by mongo) and the things id
which identifies DTs.

Figure 4.10: Create/Restore R-DT.

When the system starts, it checks if a record exists by the specified things id. If yes,
the DT object is restored, built and inserted into the Ditto server for applying the digital
twin pattern. Otherwise, the default R-DT is created and inserted into Ditto with that
things id. Figure 4.11 shows the sequence diagram of the process described.
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Figure 4.11: Sequence diagram about system’s startup

4.5.4 Vehicles Detection and Counting

The python algorithms containing the AI scripts can be launched independently from
the other modules through a command from the Google Coral Dev board. VideoDetector
is the python object in charge of performing the object detection and counting task. It
loads the model, captures the video, produces results and sends them to NodeRED by
publishing messages on the MQTT broker.

The model’s inputs for performing vehicle detection are images coming from either
real-time or recorded video frames. In fact, VideoDetector is also able to manage video
streams thanks to the opencv python library. Once captured the stream, on each frame
an inference is performed. The names of the classes detected by the model, along with
their probabilities values, are drowned on the frames and shown for displaying the infer-
ence’s result.

One of the issues faced was how to keep track of vehicles passing by the camera.
To do that, VideoDetector object uses EucleudianDistanceTraker. The operation of
the latter is based on the euclidean-distance concept to keep track of objects in video
frames. Iteratively, It determines whether there is a difference between two center points
of an object in the current frame and the previous frame. If the result is less than a
certain threshold, then the two objects are the same but in different frames. In this way
the tracker is able to maintain a dictionary with the positions of each detected object.
Finally, that dictionary is used by the VideoDetector to count vehicles. Basically, a
virtual line with static x and y values is drawn on each frame. For each object in the
tracker dictionary the center is calculated. If the center point crosses the virtual line,
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then the counter of that specific class of vehicles is incremented. Info concerning class
and current count of vehicles detected are sent to the backend logic through the MQTT
broker. Figure 4.12 shows the activity diagram of the described code.
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Figure 4.12: Activity diagram of the vehicle detection and counting code

4.5.5 Pollution Data Gathering and Displaying

While vehicles are detected and counted, the MEMS Gas sensor gathers data concerning
CO and NO2. After three minutes of necessary calibration time, the sensor sends raw
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data to the ESP32. The latter is connected to the internet and, after processing teleme-
tries, publishes values on the specific topics (which are different for both pollutants,
see Table 4.1). The MQTT broker forwards data to the subscribers (NodeRED nodes).
Figure 18 shows the sequence diagram of the described interaction.

:ESP32Board :MQTTBroker:MicsSensor

CO value

:NodeRED

subscribe(CO_topic)

subscribe(NO2_topic)

[while true]

getCO()

publish(CO_topic,value)
notify(CO_value)

getNO2()

NO2 value

publish(NO2_topic,value)

notify(NO2_value)

loop

updateDT()

updateDT()

Figure 4.13: Sequence diagram of the interaction between Node-RED, ESP32 and the
Gas sensor board

Once reached the backend logic, telemetries are directly stored into the respective
InfluxDB measurements. Here, data is withdrawn by Grafana service and displayed on
Pollutants Monitoring dashboard for further analysis. Figure 4.5 shows an example of
how the data view appears.

4.5.6 Environmental Data Gathering

As regards environmental data, Coral Development Board runs a script which periodi-
cally gathers telemetries and forward them to NodeRED using MQTT messages. Just
like the Gas sensor board, data is acquired and sent on specific topics to the MQTT
broker. The Listing 4.2 shows the main of the python code executed by the board:

1 def main():

2 # Create instances of EnviroKit and Cloud IoT.

3 enviro = EnviroBoard ()
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4 sensors = {}

5 # Connect to the broker

6 setup_connection ()

7 # Topic definition

8 topic_temp = ’/B01 /3303/0/5700 ’

9 topic_hum = ’/B01 /3304/0/5700 ’

10 topic_light = ’/B01 /3301/0/5700 ’

11 topic_press = ’/B01 /3315/0/5700 ’

12 # Start the never ending loop

13 while True:

14 # First display temperature and RH.

15 sensors[’temperature ’] = enviro.temperature

16 sensors[’humidity ’] = enviro.humidity

17 msg = ’%.2f’ % _none_to_nan(sensors[’temperature ’])

18 send_message(msg ,topic_temp)

19 msg += ’%.2f’ % _none_to_nan(sensors[’humidity ’])

20 send_message(msg ,topic_hum)

21 sleep (5)

22 # After 5 seconds , switch to light and pressure.

23 sensors[’ambient_light ’] = enviro.ambient_light

24 sensors[’pressure ’] = enviro.pressure

25 msg = ’%.2f’ % _none_to_nan(sensors[’ambient_light ’])

26 send_message(msg ,topic_light)

27 msg = ’%.2f’ % _none_to_nan(sensors[’pressure ’])

28 send_message(msg ,topic_press)

29 sleep (5)

Listing 4.2: Python code executed by the Environmental Sensor Board

First of all the EnviroBoard() is instantiated, so as to initialize the Google Environmental
Board for gathering telemetries. After that, the connection with the MQTT broker is
started followed by the topic definition (one for each telemetry, see Table 4.1). Then,
the never-ending loop starts. Inside the while loop, telemetries are captured two by
two (as suggested by the documentation) every 10 seconds: (i) firstly Temperature and
Humidity; (ii) then Illuminance and Pressure. As soon as data have been gathered from
the field, are sent to the MQTT broker and therefore to NodeRED which will dispatch
them to proper InfluxDB measurements.

4.5.7 R-DT Status Update

When the global vehicle counter is incremented or new telemetries come from the sensor,
the R-DT needs to be updated. The R-DT on DITTO server, is continuously updated
with the new values through RESTful messages, while an update query is performed on
the MongoDB instance for storing its current status. Moreover, as regards telemetries,
as soon as the MQTT messages reach the subscribers, the new value is stored on the
right InfluxDB measurement and shown on the Grafana dashboard.

A special case which requires the update of both the DT and its status, is the
global counter reset. The R-DT stores the number of vehicles which pass by the road
of reference in a given amount of time, i. e. 15 minutes. Every quarter of an hour the
R-DT global vehicles counter is resetted, i.e. it is reduced to zero. As shown in Figure
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Figure 4.14: Object interaction for resetting the global vehicle counter in R-DT

4.14, the DTManagement flow publishes on a specific topic the message “reset”. As soon
as the message is received, a 15 minute counter is started. When it expires, both the
MongoDB record and the Ditto instance are updated.
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Chapter 5

Simulation and Results

5.1 Edge AI: performances and benchmarks

One of the most important system requirements is to perform fast complex AI algorithms
at the edge of the network, i.e. as close as possible to the physical object (road).
According to the Google Coral Documentation [67], an individual Edge TPU is able
to perform 4 trillion operations (tera-operations) per second (TOPS). Of course, each
neural network has its own architecture, which can influence the overall performances.
In order to point out the added value produced by the Edge TPU, several models with
different architectures have been tested using the hardware accelerator (TPU) along with
the CPU (on which are executed the TPU’s unsupported operation).

Moreover, exploiting Edge AI allows it to process data locally, i.e. without sending
them to the cloud. This approach has brought several benefits in terms of latency and
bandwidth consumption as well as in terms of energy dissipation. All these aspects are
crucial in constrained devices such as the Coral Dev Board. One of the goals of this
research is also to show how those benefits could positively affect an IoT system.

The results of all the simulations taken are shown in the following sections along with
an analysis about the gain that is possible to have in terms of latency, bandwidth and
energy consumption by performing AI models at the edge of the system’s architecture.

5.1.1 Accuracy and Latency

In order to provide an accurate analysis, each model has been tested on the script
presented in the previous section 4.5.4 and therefore with the same video stream. In the
next paragraphs two terms are used to measure models’ performances: mean average
precision (mAP) and latency. The mAP is the primary metric according to COCO
evaluation metrics [57] and is based on (i) Confusion Matrix; (ii) Intersection over
Union (IoU); (iii) Recall; and (iv) Precision. Each model is assigned its own mAP
which represents the accuracy score averaged over all detection’s categories. The term
latency instead, refers to the time required for just one inference: the higher this value,
the slower is the overall inference applied by the model.
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The testing session pointed out that models’ accuracy and latency are inversely
proportional: if the accuracy increases, the latency decreases and vice-versa. Instead,
accuracy is directly proportional to the model size, i.e. the amount of memory used by
the quantized model. By increasing the accuracy, the memory size increases as well and
the more is the model size, the lower would be the latency.

The pre-trained models perform very fast both with real-time and recorded videos.
In fact, none of the three exceed 30ms per frame as inference time. The fastest one,
according to the tests taken, is SSD MobileNet V1, which has a latency of 12.6ms. On
the other hand, whatever they earn in latency, they lose it in terms of accuracy. In
fact, all the three models didn’t perform very well in detecting classes, sometimes they
weren’t able to detect the object even if it was on the frame. Among the three models,
the one that represents the better trade-off between accuracy and latency is SSDLite
MobileDet. Moreover, these models have been already trained on a dataset (COCO)
and they are only able to detect 90 classes. An object which doesn’t belong to this set
of classes will not be detected. As future work (Chapter 6), the idea is to improve the
vehicle detection model by adding several classes which represent the exact brand of the
vehicle. For these purposes, the pre-trained models are not suited for this system but
they can be used as a base for transfer learning to retrain custom models with a given
imageset.

With respect to the previous models, the retrained ones present higher precisions.
In fact they are able to detect the right vehicle class (on the average). As it has been
pointed out in the introduction of this section, high accuracy means latency loss. As a
matter of fact, both the retrained models have almost the same latency (around 70 ms
per frame), which more than the double of the lowest pretrained model, i.e. SSDLite
MobileDet. The neural network with the highest mAP between the two of them is the
MTD Model (85,5%). The latter has been trained using zoomed images of vehicles (MTD
dataset, Section 4.4.2), therefore is more suited for situations in which the camera is not
too far from vehicles. In fact, a bad placement of the camera could lead to detection
errors. The other model - TI Model - also performs very well. Although the mAP is
pretty low (67,2%), the network has been trained using traffic images, i.e. images coming
from traffic cameras (using the IT dataset, Section 4.4.2). This makes the TI Model very
suited in those situations in which the camera is very far from the road (e..g the actual
traffic camera placement). Figure 5.1 sums up, plotted on a graph, the benchmarks of
both pre-trained and re-trained models in term of latency and accuracy

5.1.2 Edge TPU Performances

The same models tested on Google Coral Dev Board using the Edge TPU, have been
executed also using different hardware configurations, such as the embedded Dev Board
CPU, i.e. NXP i.MX 8M SoC (quad Cortex-A53, Cortex-M4F). Moreover, thanks to
preliminary simulations, it was possible to execute all AI models on a very performing
Desktop CPU (Intel® Core™ i7-6820HQ, 2.70GHz x 8) and eventually compare them
with the outputs of the configurations mentioned above.

The purpose of this experiment was to understand the great added value of using a
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Figure 5.1: Benchmark in terms of Latency and Accuracy of both pre-trained and re-
trained models

Tensor Processing Unit at the edge. Even if we lose some accuracy, saving computation
time is an important feature for constrained devices. In fact, latency is directly propor-
tional to the power consumption: the slower the model the more is the power dissipated
by the device. To execute complex ML models requires a certain amount of energy
which is not always available. Note that, for the sake of comparison, all models running
on CPUs (Desktop and Embedded) and Edge TPU are the TensorFlow Lite versions
and all of them have been tested using the same video stream. Figure 5.2 below shows
the comparison between the inference time per frame achieved by using the different
hardware configurations.

The results achieved are amazing. The execution of the pretrained models using the
Edge TPU is way faster than executing the neural networks on the Embedded CPU: from
being almost 17 times faster in the case of the SSDLite MobileDet model till being 30
times faster for the SSD MobileNet V1 model. The differences decrease when comparing
the latencies of the Edge TPU with the ones obtained using the Desktop CPU, but still
the ML accelerator performs better: from 3 to 6 times faster, depending on the model
used. As regards the retrained models, using the Edge TPU is still the better solution in
terms of performances: it is 6 times faster than the Embedded CPU and 1,6 times faster
than the Desktop CPU. Hence, the use of the Edge TPU as a ML accelerator could
seriously improve the whole system performances in terms of latencies (i.e. inference per
frame) but also of power consumption and memory saving (by reducing the model size).
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Figure 5.2: Time per inference among different hardware configurations

5.1.3 Low Latency and Bandwidth Consumption

Using a cloud-centric approach for computer vision tasks (such as the vehicle detection
one), the camera module placed at the edge needs to capture frames from the real-time
video stream, and then send them one by one to the cloud. Here, the AI modules take
them as input and perform inference. This process lends to two important drawbacks:

• latency in field to cloud (and back) is not acceptable;

• real-time streaming requires high bandwidth.

Exploiting Edge AI allows to perform all these operations locally, avoiding high latencies
and saving communication bandwidth since data don’t need to be transmitted.

In order to show practically this concept, it is possible to calculate the amount of
bandwidth that we need to send each frame to the cloud. The total upload time is the
output of the following formula:

Total Upload T ime =
File Size (Mb)

Upload Speed (Mbps)
(5.1)

The Upload Speed is nothing but the bandwidth, which expresses the amount of bits
that can be transmitted per second. Usually it is calculated in Mbps (Megabit per
second). The File Size is the size of the frame to send and it is expressed in Megabits
(Mb = Megabytes (MB) ∗ 8 bits). By setting the latency that one wants to achieve
in data transmission, i.e. (Total Upload Time), and by using the inverse formula of 5.1,
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one can calculate the bandwidth needed, i.e. the Upload Speed :

Upload Speed (Mbps) =
File Size (Mb)

Total Upload T ime (s)
(5.2)

The video stream used for this simulation is the same used for the inference’s latency
and accuracy analysis of the previous subsection (see Subsection 5.1.1). Each frame
captured by the camera module, and therefore by the python algorithm, has an approx-
imate file size of 242 KB (Kilobytes), i.e. 0,242 MB and therefore 1,936 Mb. To keep
the latency below 100 ms per frame, we need approximately a bandwidth of 19,36 Mbps.
Note that this value refers to just one transmission.

Using the frame rate of the real-time video stream, it is possible to calculate the
total amount of frames the edge module sends to the cloud. Let’s take into account
just one-day interaction between edge device and cloud server. For instance, using a
20fps (frame per second) bitrate, the camera module is able to capture 72.000 frames in
just one hour. By multiplying this number for 24 hours (one day interaction), the edge
module has to send 1.729.000 frames eventually. Since the transmission of just one frame
in less than 100ms requires a bandwidth of 19,36 Mbps, the total bandwidth used for
field to cloud communication would be 33.454.080 Mbps. This value is huge taking into
account that it significantly affects the power dissipation of the edge module. Moreover,
if one wants to achieve lower transmission latencies, it has to increase the bandwidth
as well since they are inversely proportional, i.e. achieving increasingly higher values.
Figure 5.3 shows how the bandwidth required for transmitting just one frame increases
as soon as the communication latency decreases.
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Figure 5.3: Line graph that shows how latency changes reflects to bandwidth

By exploiting AI at the edge, frames are processed locally, only results are sent to

52



CHAPTER 5. SIMULATION AND RESULTS

either fog nodes or cloud servers. In this system, when a vehicle is detected for the first
time, an MQTT message is published by the Coral Dev Board on a specific topic. The
length of the payload could vary, depending on the vehicles’ class detected (the string
“car” has only 3 characters, i.e. 3 bytes, while the string “motorcycle” has 10 of them,
i.e. 10 bytes). Moreover, an MQTT packet is made of the following parts:

1. a control header of 1 byte (fixed size);

2. a packet length field which could be between 1 byte and 4 byte, depending on the
payload length;

3. a variable length header which contains the topic name;

4. the message payload;

5. 2 fixed bytes at the end of the packet as packet id.

In the worst case, the payload could be 10 bytes (motorcycle) plus other 34 bytes which
are part of the string message (e.g. {”type”: ”motorcycle”, ”current count”: ”4”}), the
total payload size would be 44 bytes. The topic used is tms/script/vehicles, hence the
variable length header (number 3 of the list) is 19 bytes. By adding to this amount
the control header byte, the packet length field (1 byte) and the final 2 bytes for the
packet id, the final MQTT packet size in the worst case is 67 bytes, i.e. approximately
0.000063 MB. Note the huge difference in terms of size that there is between one frame
to send (0,242 MB) and one packet to send. Let’s say that the mean amount of messages
sent per frame is 5 MQTT packets, i.e. 335 bytes, using the Equation 5.2 it is possible
to calculate the bandwidth by keeping the latency of 100ms. The value achieved is
around 0,026 Mbps, compared to the 19,36 Mbps needed for sending a frame to the
cloud in less than 100ms. Table 5.1 highlights the huge difference and gain in terms of
bandwidth consumption that is possible to achieve by moving computation at the edge
of the infrastructure.

Edge Cloud

Bandwidth 0,026 Mbps 19,36 Mbps

Table 5.1: Bandwidth consumption: edge vs cloud

5.2 Querying R-DT

To build the digital twin of the road means to abstract the physical object into its virtual
counterpart by providing synchronous and asynchronous APIs. The latters, can be used
to work with the real environment, enabling the Object as a Service paradigm. In fact,
third party applications can communicate with the road as they do with normal web
services, i.e. through request/response messages. In fact, using a set of REST API
is possible to gather relevant information about environmental parameters, pollutants,
road conditions, traffic viability and so on.
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Once the DTs are created, the Eclipse Ditto service provides a group of well doc-
umented APIs which can be visualized using OpenAPI Swagger tool (Figure 5.4) and
perform the following tasks:

• things (DTs) creation and management;

• things’ features structuring;

• things’ control access management;

• things’ search and filtering;

• things’ communications.

Figure 5.4: Eclipse Ditto’s OpenAPI Swagger tool

While NodeRED creates, updates and manages the R-DT, it is possible to gather
real time data by querying road’s features and attributes to the Ditto server. For each
information there is a specific path that needs to be composed, along with the HTTP
method to perform the already known operations: GET, PUT, POST, DELETE. For
instance, by executing a GET to the path http://ip.of.the.host:8080/api/2/things one
can retrieve a list of all the visible things managed by Ditto server. By using the POST
method on the same path a new thing (i.e. a new digital twin) can be created. By using
the proper path for the features, it is also possible to get the real time status of that
specific thing. Figure 5.5 shows an example of HTTP GET query which returns the
list of all the features of the R-DT, i.e. both the road and the environmental real time
information.

Of course not all APIs are allowed to be performed by third party applications. For
instance, sometimes the read-only mode is preferred in monitoring applications such as
this Traffic Monitoring System. To deal with this, Ditto offers API for things’ policy
management, i.e. help developers to control access to their digital twin. It is possible
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Figure 5.5: HTTP request for getting the features list of the R-DT

to specify which API call can be performed on which digital twins by modifying and
managing the things’ access policies, ensuring security and privacy.
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Conclusion and Future Works

According to the United Nations “The World’s Cities in 2018” booklet [23], by 2030
almost 28% of the worldwide population will be concentrated in cities with at least 1
million inhabitants and nearly the 8.8% in the so called megacities, i. e. cities with at
least 10 millions citizens. The lower is the urban density, the more is the demand of
resources such as energy, electricity and primary goods with a consequent increase of
waste that could lead to both social and economic problems. Furthermore, the current
climate crisis is pushing researchers to find sustainable solutions and innovative ways
to solve both noise and air pollution along with ever-increasing urban traffic congestion
[68].

In this context, this work of thesis promoted an innovative approach for showing how
general purpose sensing and DTs can synergically describe and digitize large physical
environments. The technique chosen for supporting general purpose sensing capabilities
enabled the usage of elementary sensors powered with AI algorithms: the virtualization
of such sensing devices is the first step toward the development of a DT and hence of a
“a device as a service”, i.e. to keep a digital version of the physical environment which
can respond to queries, reflect the real physical changes, store object’s signatures and
provide availability along with reliability (just like a normal web service). The potential
of the combination of two technologies together is huge and can be applied both in small
and large environments. To assess this novel approach, all these theoretical concepts
have been implemented in a Traffic Monitoring System. The latter is able to monitor
pollutants and environmental parameters as well as to detect and count vehicles in order
to provide useful information for traffic congestion and viability.

The results of this Thesis proved that moving AI algorithms at the edge of the
network is possible and high performing. During all the tests taken, Google’s Edge
TPU (equipped on Coral Dev Board) achieved very good performance even by running
complex object detection models, with the Edge TPU resulting 10,3x faster than the
Embedded CPU and 2,2x faster than the Desktop CPU as well as more efficient in term
of energy and bandwidth consumption, since the cloud-centric solution consumes almost
745x times the amount of bandwidth consumed by the edge device. This behavior is due
to the local execution of the optimized model size which allows to perform increasingly
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faster inferences by still not dissipating a big amount of energy in remote computations.
Towards the final deployment of the presented prototype system, still additional

improvement needs to be performed. First of all, the AI algorithms have to be tested
on the Edge TPU, i.e. on Google Coral Dev Board. The idea of bringing AI at the
edge of the network could improve performances and overcome common issues (such as
privacy and delays). In fact, according to the documentation, the times that the Dev
Board needs to derive an inference are significantly lower than the ones achieved in the
system’s test. This could power up the computer vision task, by detecting vehicles’
classes in just a few milliseconds.

Another potential enhancement is the improvement of the vehicles detection capa-
bilities, by increasing the number of car classes that the model can detect. Currently
the AI model can only detect 4 classes of vehicles (bus, car, motorcycle, truck). The
final goal is not only to identify the type but also the specific model of a vehicle (e. g.
Citroen C4, Tesla Model X). To add this feature is not trivial since, to provide a good
service, models need to be trained with a proper dataset. Moreover, another challenge
will be to minimize incorrect inference results. The presence of these errors could be
very common since the shape of cars is very similar nowadays.

According to the objectives described in this thesis, one of the next steps will be
also to capture and analyze engines’ sound coming from vehicles. Since computer vision
alone could be not enough for detecting the true vehicle type and model, engines’ noise
can be used to build the signature that DTs can store. Therefore these information could
become inputs for AI models, helping them to uniquely identify objects of interest.

Finally, from an environmental perspective, it is interesting to analyze pollutants
emitted when vehicles pass by. The environmental warning is a serious issue and pro-
viding granular data about vehicle emission could seriously help to reduce pollution in
metropolitan areas. Cities’ governance could be aware of the whole environmental sit-
uation and take action based on it, by reducing the global pollutants’ emission. By
focusing on the impurities produced by a single vehicle, it is possible to add them to
signatures (already equipped with images and sounds), and therefore to significantly
enhance vehicle detection. In this way the system could be able not only to work in
favor of the environment, but also to improve itself.
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[25] Hannu Penttilä, Marko Rajala, and Simo Freese. “Building information modelling
of modern historic buildings”. In: (2007).

[26] Siemens Global. Building information modeling. url: https://new.siemens.com/
global/en/products/buildings/digital-building-lifecycle/bim.html.

[27] Siemens Global. Building Twin: The backbone of a smart building. Apr. 6, 2020.
url: https://new.siemens.com/global/en/company/stories/infrastructure/
2020/building-twin-backbone-smart-building.html.

[28] Siemens Global. Building Twin — Digital building lifecycle. url: https://new.
siemens.com/global/en/products/buildings/digital-building-lifecycle/

building-twin.html.

[29] Aaron Costin et al. “Building Information Modeling (BIM) for transportation
infrastructure–Literature review, applications, challenges, and recommendations”.
In: Automation in construction 94 (2018), pp. 257–281.

[30] Andrey Rudskoy, Igor Ilin, and Andrey Prokhorov. “Digital twins in the intelligent
transport systems”. In: Transportation Research Procedia 54 (2021), pp. 927–935.

[31] Sathish AP Kumar et al. “A novel digital twin-centric approach for driver intention
prediction and traffic congestion avoidance”. In: Journal of Reliable Intelligent
Environments 4.4 (2018), pp. 199–209.

[32] Hakdaoui Sofia, Emran Anas, and Oumghar Fäız. “Mobile mapping, machine learn-
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