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Abstract

In the realm of Information Technology (IT), Speech Recognition (SR) stands as
an ever-evolving field, fueled by the growing market demand for customer-centric
services and products. Within this domain, existing technologies have undergone
adaptations to create systems with the capability to understand human speech.
The integration of Machine Learning (ML) into data analysis has introduced a
groundbreaking paradigm shift, showcasing how machines can acquire extensive
knowledge through algorithms, allowing them to detect emotions in text, voice,
or images. Recently, the emergence of TinyML, which tailors conventional ML
techniques for devices with limited computational capabilities, such as embedded
systems, has unlocked previously unexplored opportunities. Notably, TinyML has
enabled the creation of smart sensors that can process data acquired from the
surrounding environment in real-time, including the recognition of spoken words.

In this thesis is presented a system designed to assess the degree of appreciation
for artworks in a museum, wildlife in a natural park, or any service provided to
people. It accomplishes this using smart sensors strategically positioned to capture
spoken words from users. We leveraged Edge Impulse, a new innovative platform
used to develop Artificial Intelligence (AI) applications on edge devices, giving us
the possibility to design and implement a new generation system. Starting from
data acquisition and extending to deployment on embedded devices, specifically
the Arduino Portenta H7, Edge Impulse offers the flexibility to use pre-built pro-
cessing blocks for implementation or to design custom models using Python and
TensorFlow for learning.

The performances of the developed system have been evaluated in terms of com-
putational complexity and reliability of the results, showing that the lightweight
algorithms, supported by microcontrollers, can be used in SR delivering results
and performances comparable to traditional computing nodes. Finally, the system
has been deployed and tested on Arduino Portenta achieving highly satisfactory
results. An average of 80.85% of accuracy has been reached, demonstrating the
potential for its practical deployment in public spaces.
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Chapter 1

Introduction

The Internet of Things (IoT) is a system of heterogeneous devices, ranging from

conventional computing systems to intelligent everyday objects, with the ability to

transfer data over different kinds of networks [1]. In recent years, the proliferation

of the IoT has resulted in the interconnection of billions of entities, giving rise to

various challenges. Among these challenges, two prominent issues have emerged:

heterogeneity and inaccuracy. Heterogeneity arises from the diverse data types and

attributes used to describe the ’things’ in the IoT ecosystem. Inaccuracy, on the

other hand, stems from imprecise or erroneous data generated or collected by IoT

devices. The sheer volume of data generated in real-time within dynamic networks,

commonly referred to as ’Massive Real-Time Data,’ has further compounded these

challenges [2].In light of these developments and in direct response to the challenges

posed by IoT, Machine Learning (ML) has emerged as a promising technology

with the specific goal of enabling huge volumes of data produced by IoT devices,

allowing efficient data processing, analysis and interpretation.

In the past years, the significance of people’s appreciations, opinions, and emo-

tions has grown significantly, prompting numerous studies in the realm of Infor-

mation Technology (IT) to emphasize these aspects. Delving deeper into research

becomes crucial to obtain effective and reliable findings regarding the satisfaction

levels with products or services. Hence, the results achieved can be used either to

increase users’ satisfaction or to rectify any deficiencies or inaccuracies within the

service itself. In today’s society, both public and private organizations are highly
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CHAPTER 1. INTRODUCTION

motivated to collect feedback, striving for excellence in both quantity and quality.

This feedback has become the primary fuel for assessing the level of appreciation

for various subjects, companies, products, or any objects, whether they are pre-

sented physically or virtually to the public. Appreciation data can be of many

types and sources, such as post-restaurant visit ratings or sharing comments on

social networks. The primary aim of scientific research in this specific field is to

leverage such data effectively to achieve optimal outcomes in shaping the emotions

and perspectives of users. However, discerning an individual’s feelings and emo-

tions, whether positive or negative, is a complex job and traditional software and

applications are very often unable to optimally perform such an analysis. In spe-

cific places such as museums, zoos, and amusement parks it is very often difficult

to understand the degree of appreciation of the attractions by users since there are

no advanced software systems capable of acquiring the emotions experienced but,

usually, there are only simple push-button panels with green or red buttons which

indicate, relatively, whether the attraction was to your liking or not, or there are

simple questionnaires to fill out. In this direction, therefore, it is feasible to utilize

tools such as cameras to capture individuals’ facial expressions and microphones to

capture spoken remarks, facilitating the categorization of their feelings and opin-

ions, all while adhering to the constraints imposed by privacy laws. ML, and, more

broadly, AI serve as vital strategic components for the successful implementation

of the aforementioned applications, acting as technology enablers in the field of

Sentiment Analysis (SA)[3].

Sentiment Analysis (SA) can be implemented either in the Cloud or on a remote

server to handle processing and inference, offering a contemporary and feasible so-

lution utilizing today’s technologies. However, this approach may come with its

own set of challenges, including significant network resource consumption and the

potential for latency that could disrupt system functionality. For example, trans-

mitting results over the network can lead to the loss of some sentiment inferences.

Remarkably, Tiny Machine Learning (TinyML) remains relatively unexplored in

the context of SA. Despite its recent emergence, TinyML has yielded promising

results. It harnesses the capabilities of microcontrollers to reduce energy con-

sumption significantly and circumvent the need for large, resource-intensive deep

learning models typically hosted on traditional servers.
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CHAPTER 1. INTRODUCTION

1.1 Objectives

This thesis proposal introduces a novel application that leverages TinyML tech-

niques to perform Speech Recognition (SR) for eventually SA applications, pre-

senting a novel approach to addressing the aforementioned limitations typically

linked with cloud-based solutions. The work will be structured starting from data

acquiring to deployment, on embedded devices, which will take place in strate-

gic point of interest such as masterpieces in a museum or in natural parks. The

processed information will then be useful to those who have a wonder in their

management to understand the degree of appreciation of people. For this reason,

leveraging the available data presents an opportunity to enhance future user ex-

periences. To achieve this, we will develop a specialized software system utilizing

TinyML-powered AI tools. This software will be designed to analyze audio data

and discern a lexicon of words associated with positive and negative sentiments. To

assess the system’s performance in terms of both quality and complexity, we will

deploy the developed model on a low-power board equipped with a microphone.

1.2 Thesis structure

This thesis is organized as follows: Chapter 2 discusses the paradigms, technologies

and software used to implement the system and the hardware over which the

system will be deployed. Chapter 3 focuses on the problem description and shows

the design of the system. Chapter 4 discusses the implementation details in order

to create the ML model. In Chapter 5 all the tests carried out on the device, in

real scenarios, are shown and discussed, while conclusions and future developments

are reported in Chapter 6.
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Chapter 2

Background

The solution proposed in this thesis is based on novel computing paradigms such as

AI, ML, TinyML, Neural Network Edge Computing, which will be briefly

introduced in this Chapter.

Likewise, will be presented some software and frameworks used for implement-

ing ML algorithms like Keras, TensorFlow and TensorFlow Lite (implementing

the mathematical operations that are the basis of ML and allow the user to create

programs interacting only with high languages level as Python over computers

and microcontrollers), and finally the tool Edge Impulse, a recent software that

offers a web-environment to perform all operations related to the development of

embedded ML models, from data collection to deployment of the application on

the edge device.

2.1 Artificial Intelligence

AI is the study of building or programming computers to enable them what hu-

mans minds can do [4]. AI is a discipline belonging to IT which has evolved with

the birth of first computers, and it is used both in the context of business process

and also in the daily life. The Tuning test marked the birth of AI because for

the first time, he focused the problem of a machine’s ability to think. During

the years this branch of computer science has grown and there are many studies

carried out in search of continuous improvements. Obviously, this meets heavy
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ethical-philosophical criticism. The AI has evolved and then branched into sev-

eral minor disciplines and trying to make a classification, we can distinguish, the

following interest area of AI:

• Voice

• Natural Language

• Automatic Reasoning

• Knowledge

• Learning

• Robotics

• Vision

2.2 Machine Learning

ML stands out as one of the most prominent subsets within the field of AI, garner-

ing extensive attention from researchers, including computer scientists and math-

ematicians, over the years. An ML algorithm is a computational process that uses

input data to perform a desired task without being literally programmed [5]. Fun-

damental is the process of adaption or training in which the algorithm, through

the training data, configures itself to respond to input already seen or new try-

ing to associate each input to a desired output and the executing a process of

generalization.

The ML algorithm to learn use data collections, called datasets, which can be

created or acquired from the real world. It’s possible to distinguish two types of

ML [6]:

• Supervised Learning

• Unsupervised Learning
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A classic and simple example of supervised learning is the classification of an

input in labels defined a priori. This classification is opposed to that typical

on unsupervised learning, the algorithm studying the initial data defines clusters

dividing the various data according to their characteristics. In this case there are

no labels defined a priori but groups of input grouped by similarities. Therefore,

the techniques cited before find applications in practically any field and the type

of learning in which take place the thesis proposal is in the field of Supervised

Learning. In the Figure 2.1, we can see the generic workflow for an ML model.

Figure 2.1: Generic ML model workflow

Another important key moment in the designing and implementation of a model

is the training phase. The training of a model can therefore be seen as the choice

of best parameters. These are numerical values that represent the model itself and

determine its results. The parameters are chosen according to the results, and

through these you choose whether to continue the training phase. In fact, the

models can have results that are accurate or not, and the metric usually most

used to measure the quality of the model is the accuracy. These metrics in how

they are used depending on the model. In this way, the steps needed to create a

model of ML can be seen as:

• Study of the problem

• Data collection
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• Data preparation (ex. Pre-Processing)

• Model choice

• Model training

• Model evaluation

2.2.1 Tiny Machine Learning

TinyML is part of ML with a reduced or minimal use of the resources of a machine

that is usually represented by an embedded system. This approach has spread so

rapidly that resources increase day by day. This is due to the usefulness that

TinyML has found in every field and the advantages that derive from it to a

traditional approach. A lot of research documentation and field of application of

TinyML can be found in [7] and [8].

Systems are usually based on IoT devices or sensors that communicate with

the Cloud. A classic example of TinyML applied to smart devices concerns the

well-known Alexa device, produced by Amazon. In these cases, you can not use

the wake-up word and wait for the data sent to the Cloud to be processed and

returned. The best choice is to run the ML algorithm on-site. The system which

run ML algorithm on-site must be able to be active at all times, so in addition

to being very small to ensure a reduced use of energy. In fact, microcontrollers

usually consume energy in the order of microwatts or milliwatts, while normal

CPUs in the order of the watt. The advantages of TinyML are many and also

depend on the use cases.

The execution of local inference is faster than the remote one. So, the software

is less complex and produces a low latency output. Embedded devices are designed

to consume as less energy as possible. Privacy is also ensured because programs

are executed locally, and it’s not necessary to send data over the network. In this

way is avoided the risk of running into malicious actors that can intercept data.
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Figure 2.2: Tiny Machine Learning

2.3 Neural Network

Artificial Neural Networks (ANN) are a type of machine learning model inspired

by the structure and functioning of the human brain. They are made up of com-

putational units called “artificial neurons” or “perceptrons” which are organized

in layers and connected to each other by synaptic weights. More precisely, in

1943, scientists McCulloch and Pitts theoretically described the first elementary

neural network that worked on binary data. The ANNs mimic the neurons and

the synapses of the human brain, as well as the ability that neurons have to get

information. But, the most important concept imitated is that the flexibility of

connections and therefore synapses. In fact, the human brain has dense but flexible

synaptic connections that vary depending on the stimulation that receive.

2.3.1 Convolutional Neural Network

Convolutional Neural Networks (CNN) have all the characteristics of traditional

networks. The only notable difference between CNNs and traditional ANNs is that

the firsts are mainly used in the field of patterns recognition [9]. These networks

bring the capabilities of the machines to those of the human brain, especially since

they were built imitating the recognition modalities used by the brain.

The operation of CNNs is based on the identification of features, or character-

istics, relevant in a some data sequence and their training consists in providing the

network with a certain training dataset in which recognizing recurring patterns

and associating them to classes the network will learn to classify unknown data in

the future. An important advantage of CNNs is that the training of these networks
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also teaches them to recognize the dependencies of spatial and temporal data, so

you do not get the result only based, for example, on the various bits of an image,

which may have not taken individually, but could have a connection if seen as a

whole. In addition, thanks to the ability to detect the relevant characteristics, the

data to be processed are very reduced by focusing only on what really matters.

CNNs have become the most studied and used NNs.

Feature Extraction Classification

Figure 2.3: Example of Convolutional Neural Network

2.4 Edge Computing

The proliferation of the IoT has meant that much more data is created in a

widespread and geographically distributed way, and this data is likely to be greater

than that generated by cloud data centers. According to Ericsson study, it is es-

timated that by 2024, IoT devices would produce 45% of the 40ZB of worldwide

internet traffic. [10]

It is difficult to move such massive amounts of data from the edge to the cloud

because it’s expensive in terms of energy consumption, money, and subject to some

downsides like network delay, privacy, and connectivity issues. Therefore, directly

addressing user requests at the edge is more practical, giving rise to a brand-new

computing paradigm known as Edge Computing. In order to deliver services

and execute calculations, the premise of Edge Computing is to shift computation

and communication resources from the cloud to the edge of networks. This reduces
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needless communication delay and enables faster replies for end users. The field

of edge computing is currently growing. [11]

The Edge Computing describes the enabling technologies which allow compu-

tation to be done at the network’s edge on downstream data for cloud services and

upstream data for IoT services. Any computer and networking resources located

between data sources and cloud data centers are referred to as the “edge” [12].

For instance, a smartphone is the edge between physical objects and the cloud, a

smart home gateway is the edge between things and the cloud. The idea behind

Edge Computing is that processing should take place close to data sources.

Figure 2.4: Layered IoT architecture

2.4.1 Edge Intelligence

Nobody can dispute how quickly AI is evolving in the modern world. Big data

processing demands more potent techniques, i.e., AI technologies, for obtaining

insights that result in wiser choices and tactical business moves.

Edge Intelligence (EI) is a result of the integration of Edge Computing with

AI, which is functionally required for the speedy analysis of massive amounts of

data and the extraction of insights. [11]
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EI appeared to enable the model and ambitious IoT services and scenarios.

To extend intelligence outside the cloud, it integrates both cutting-edge and tra-

ditional techniques from edge and cloud computing, AI, data science, and net-

working. This strategy, also known as “Edge AI” promotes local activities above

those that take place in the cloud or a centralized data center. It works better if

edge devices—such as smartphones, IoT devices, and industrial equipment—are

directly involved. [13]

Figure 2.5: Comparison between Central Intelligence and Edge Intelligence. [14]

2.5 Technologies and hardware

2.5.1 TensorFlow

TensorFlow [15] is an ML framework that works on large scale and heterogeneous

environment. Developers can test out cutting-edge optimizations and training

techniques thanks to TensorFlow. TensorFlow supports a wide range of applica-

tions, with training and inference on deep neural networks receiving particularly

strong support. TensorFlow has been widely adopted for machine learning research

and is utilized in several Google services. It was made available as an open-source

project. The main strength of TensorFlow is that it offers a user-friendly environ-
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ment, even for less experienced programmers. In fact, it allows you to create a

ML model in a few lines of code and working at a high level, without the need to

deepen the mathematics and the calculations below. It is implemented in C++,

Python and CUDA, and it connects with the Keras API in order to build blocks

for ML models.

2.5.2 TensorFlow Lite

TensorFlow Lite (TFLite) [16] is a collection of tools that makes it possible for de-

velopers to execute their models on mobile, embedded, and edge devices, enabling

on-device ML. TFLite for microcontrollers (TFLite Micro) is a recent adaptation of

TFLite (mid-2019), dedicated to the execution of ML on microcontrollers. TFLite

itself provides APIs in several languages, such as Java, Swift, Python, and C++.

This toolkit mainly presents two basic tools: the converter (TFLite Converter)

and the interpreter (TFLite Interpreter) that can be installed independently on

the device on which we want to make inference. The converter has the main task

of optimizing the model by reducing its size and increasing its speed of execution.

On the other hand, the interpreter is responsible for executing previously trained

ML models on devices. It loads the model in a compatible format and once it is

put in, performs inference, based on the input data provided.

2.5.3 Edge Impulse

Edge Impulse [17] is a cutting-edge platform dedicated to simplifying and accel-

erate the development of embedded machine learning applications. The platform

offers a high-powered method for deploying ML models on edge devices as the

world continues to include the IoT and the integration of AI.

The first support, offered by Edge Impulse, is a data collecting system that

enables customers to collect and store training and test data with the model and

implementation code. Edge Impulse provides several kinds of techniques to collect

data in real-world environments, rather than relying on rebuilt dataset or needing

customers to build their own data collecting technique.

The second contribution is to help in the stage of combining pre-processing fea-

ture extraction with deep learning, enabling users to examine a variety of potential
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Figure 2.6: Example of creating an Impulse

solutions to each individual job or task.

The third support is a portable and adaptable inferencing library that can be

used with a variety of embedded and edge systems. The EON Compiler reduces

the amount of RAM and flash pace used. [18]

Project developed using Edge Impulse may receive data in different file formats

such as CSV, CBOR, JSON, WAV, JPG, or PNG. Additionally, this novel platform

provides several ways for users to collect data for the projects, such as command

line interface (CLI) that connect to device firmware to receive data in real-time.

One of the most important notions of Edge Impulse, from which the platform

takes its name, is that of impulse. The impulse is composed of a set of processing

blocks, which can be executed sequentially or in parallel, with other blocks. The

impulse can be created after gathering all the needed data for the project’s imple-

mentation. Therefore, the entire impulse is made up by 3 building blocks: input

block, processing block and learning block. In the Figure 2.6, it’s possible to see

an example of a sound recognition from audio impulse.

The input block points out the kind of input data used for training the ML

model. The type of data can be different such as audio, vibration, movements

(time series) or images.
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The second block, which is the processing block, is a feature extractor. The

characteristics that our model learns on are extracted using DSP (Digital Signal

Processing) techniques. Depending on the kind of data utilized in your project,

these processes change.

The third and last block are the learning block. It is a NN that will be trained

to learn on acquired data. The type of data in the training dataset and the function

you want your model to perform determine the learning blocks.

2.5.4 Arduino Portenta H7 and Vision Shield

The Arduino family’s Portenta H7 developer board has been built as an “Edge

Device” and it has two parallel cores, a graphics accelerator, and can run both

real-time and high-level tasks at the same time. Additionally, an onboard wireless

module enables it to simultaneously manage WiFi and Bluetooth connectivity

[19]. The dual-core STM32H747, which has a Cortex M7 operating at 480 MHz

and a Cortex M4 operating at 240 MHz, is the primary microcontroller used by

H7. Through a Remote Procedure Call mechanism, the two cores may easily call

functions on the other CPU.

The Portenta H7 may utilize a camera module with an ultra-low power CMOS

image sensor (Himax HM-01B0), a LoRa communication module, and an ultra-

compact, low-power, omnidirectional, digital MEMS microphone (MP34DT05),

when enhanced with the add-on board Arduino Portenta Vision Shield.
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(a) Portenta H7 (b) Portenta Vision Shield

Figure 2.7: Arduino Portenta H7 and Portenta Vision Shield
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Chapter 3

Problem description and System design

The system has been intended to be used in context of natural parks, museums or

similar places with the aim of recognize specific words which express positive or

negative feedback by the public. These, either indoor or outdoor, environments are

usually crowded and background noises can greatly influence the audio data. The

specific information about the public’s appreciations is represented by a 12-words

dictionary, made of 6 Italian words and 6 Spanish words, chosen to represent two

sets of positive and negative feelings.

The presence of numerous visitors around an object of interest naturally en-

courages people to pause, engage in observation, and share their thoughts and

emotions. Therefore, the basic idea is to deploy a microcontroller, which, through

the use of an integrated microphone, is able to capture the surrounding audio in a

certain spatial range. After audio acquisition, the microcontroller is able to recog-

nize whether the received audio data can be associated with one of the 12 words

in the dictionary.

An important element to take into consideration is that in the proximity of the

target there might be an overlapping of voices and, therefore, the microcontroller

should be able to perform a correct SR regardless the background noise. The results

of an initial on-site processing can then be sent to a central server for subsequent

processing, for the sake of privacy- and bandwidth-saving. The architecture in

Figure 3.1 depicts how the proposed system is designed and deployed.
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Figure 3.1: System architecture

3.1 System Design

The data handled by the microcontroller are audio recordings, and they must be

properly processed. It is important to set processing windows of the same size for

each registration in order to be able to properly catch each audio characteristics.

There are two main macro-components that must be present regardless of the

technologies used.

• The first component, used to process data captured by the microphone of

the Arduino Portenta H7;

• The second component, used to perform the classification on the data taken

as input.

The main goal of the thesis is perform SR over a set of a-priori defined dictionary

(thus such a type of classification falls within the scope of supervised learning)

leveraging on the paradigms and technologies described in Chapter 2. Specifically,

we will use the NNs in the context of TinyML. Therefore, there will be additional

support components that will make up the final system and which will be necessary

for the creation of the model, such as:
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• Code: the code for the microcontroller is necessary to get ready the Portenta

environment and to recall the model in order to perform inferences. The code

must be loaded to the Arduino sketch as library.

• Data: they represent the system data. There are three different types of

datasets available. The first two, validation and training datasets, are used

for the training component and the third, testing dataset, will be used for

final inferences.

• Training: the core of the system. The training component is in charge

to coordinate training of the model and to execute it. The part of audio

data processing performs operations on data, such as resizing the window.

Another specific component performs audio elaboration in order to extract

features, such as MFCC (Mel-Frequency Cepstral Coefficients) which work

well with the human voices. The definition of the NN is another component

of the system. Here, will be also defined the parameters that must be trained

to recognize data and to classify them. The last component is the inference

model represented by its parameters, and it is the result of the training phase.
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Figure 3.2: UML diagram of architecture design

3.2 Training process and system modelling

In the last section, 3.1, it was shown a UML diagram which highlight the archi-

tecture design. Now it’s time to see the training process needed for the system to

recognize the dictionary’s words.

During the development phase, the software is created to enable data recogni-

tion. Before this, recordings are carefully labeled to make it easier for the system

to recognize words. Following, in a testing phase, will be given new words to the

system, in order to see how the software works in labelling them.

Preliminary and final steps of training process were emphasized too in order to

contextualise them. We can start by preparing the development environment of

the Portenta board and in parallel collect the audio data for the dataset. We can

therefore see, going into the specifics of the training process, how it is structured

for the case study. In the field of NNs, it is important to develop the structure of

the training process and, obviously, to define a good training architecture.

In the Figure 3.3, it’s possible to see a UML diagram that defines the steps
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Device code 
development

Data 
acquir ing

Training 
development

Training

Testing

Good 
results?
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On-device 
testing

Device 
deployment

NO

Figure 3.3: UML diagram macro-activities

that must be implemented and, after, executed in order to activate training and

obtain the inference model.

Data augmentation is a valuable technique for enhancing both the quality and

quantity of the dataset, and will be applied during the training phase. Further-

more, even if it is not indicated in the diagram, the testing phase is important and

will be carried out in different steps. In the diagram, showed in the Figure 3.4, it

is shown, in a form of note, that each phase is associated with technology chosen

and explained in the Chapter 2.

Edge Impulse, 2.5.3, was used in the most crucial phases of development. Ten-

sorFlow was used for the training of the model, TFLite for conversion and Python

to develop the NN and in data processing flows. In order to develop the Arduino
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Figure 3.4: System Model Development

sketch, in the Arduino Ide, a simplified version of the C language, with additional

functions to easily manage the board’s input/output interfaces, will be used. The

trained model that will be developed must have a structure that allows it to per-

form operations very similar to those done during the training. To perform infer-

ences on a certain audio data, the model will have to perform some data processing

and classification operations identical to the training. These operations and pa-

rameters will be automatically incorporated by TensorFlow and subsequently by

Edge Impulse when they are trained and deployed for the card, respectively. In

the end, we will obtain a library that contains the model automatically.

3.3 Impulse design

The core of the system architecture, since we choose to use Edge Impulse, must be

modeled in the logic of its environment. Remembering the concept of the impulse

described in 2.5.3, we then associate, whenever possible, each component to an

impulse block. As we can see in the Figure 3.5, the Impulse of the system, the

first block is in charge to resize data, the second one to process them to extract

the features and the third deals with classification using Keras. The last block
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represents the number of output labels.

Figure 3.5: Impulse design

3.4 Arduino sketch design

Some characteristics are essential to the functioning of the system and lead to

implement the sketch that must be loaded and used by the microcontroller. The

development of the model only gets the object that executes the inference, used

to recognize words. It’s important to take into account how to record words and

perform inferences at the same time. If the inference window is set to 1 second

and the audio sampling is performed every second, it could happen that the word

to identify is between two inferencing windows, and it’s difficult to recognize.

By developing the Arduino library for the sketch, some problems are solved.

The slicing function is inserted in the Arduino sketch, and it divides the samples

into several parts. That, make sure to perform the inference on the sample many

times.

The efficient time management is paramount during the recording process to

minimize or avoid any time loss. Nonetheless, if voice captures are conducted

sequentially, with recording preceding inference, there is a potential risk of losing

time-sensitive registrations that could contain critical data. Hence, it is crucial to

directly address this issue within the Arduino sketch.
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One solution is therefore to follow the activities diagram in Figure 3.6 by per-

forming the two phases of recording and inference, in parallel. Following, in the

next Chapter, we will see the implementation details.

Per form 
inference

Still 
Running?

Waiting audio 
block

Use classi f ied 
output

NO

YES

Sample audio

Still 
Running?

NO

YES

Figure 3.6: Activity diagram of Impulse running
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Chapter 4

System implementation

The technologies, the design choices, and the system architecture described before

feed the implementation phase, discussed in this Chapter and followed by the

deployment phase.

4.1 Data acquisition

The first work, in the implementation phase, was performed focusing on data

collection. This is one of the most important step that largely affects the final

results. The NN must learn from what is proposed in this stage. For instance,

if we propose audio sample that don’t generalize well to the specific situation

then the network will learn only those details, and when there will be something

different that will not be able to recognize it.

The data gathering is performed in Edge Impulse. Here, there is the possibility

to connect different devices, but for our case the best solution was to collect data

only by using the Arduino Portenta H7 equipped with the Vision Shield which

provide a microphone, as we can see in the Figure 4.1. We choose to use only this

device because, in the next steps, as for example in the testing phase, we will use

this microcontroller.

To connect the board cited before there are several ways, and we chose to

use the Command Line of Edge Impulse, installing the Edge Impulse firmware on

the Portenta and running the Edge-Impulse-Daemon for device configuration and
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Figure 4.1: Portenta on Edge Impulse

association to the project.

The main idea is to have as much data as possible in order to try in the testing

phase many combinations as possible.

We moved on to data acquiring after connecting the device to the framework

and associating it to the project. Audio data samples of 1-second duration were

collected at a sampling frequency of 16,000 Hz. To collect data were considered

different criteria. Six people, from different countries, contributed to record all

the data. The work was conducted in a multicultural environment, and it was a

support to reach the goal. The people, with different accents and tones of voice in

pronouncing the words, ensured the creation of a highly diverse dataset, making

a fundamental contribution to its creation. It was useful to record in different

environments, with noise background, or silent surroundings like at home or in a

laboratory. The recordings were made at different distances, very near and so far,

and with different angles with respect to the microphone.

All of these considerations were made with the objective of teaching the sys-

tem with general patterns for each word, thus disregarding factors like proximity,

background noises, and other variables

Looking at the wave forms of different recordings, referring to the same word,

but pronounced by two different people, it is possible to notice how the signal is

different, but it’s possible to clearly see the common pattern, as it is shown in

Figure 4.2. In the dataset, there were also gathered noises and non-dictionary

words that were useful for training the model, and these were designated with the

label “other”. For which regard the registration of noise, they have been made in

the University, in the bar, in the street, with background music, with television

and then creating different types of noise like clapping hands, moving chairs and

so on.
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(a) (b)

Figure 4.2: Two different wave-forms of the same word

The words for the dataset, as mentioned before, were pronounced and recorded

in different positions and angles, with background noises and with silence. Specif-

ically, we choose to record with three different angles: positioned 45° to the left,

45° to the right and in front of the microphones. The background noises, to be as

realistic as possible, simulated with [20], were two, the cocktail voices, to simulate

the background voices, and the white noises.

An important observation to do, during this phase, is related to the splitting

of the data. In ML applications, and also in this case, there are different sets of

data and, in this application, each audio sample must be placed in one of the sets.

There are only recommended division and doesn’t exist the best way to select them.

Generally, the recommended range is from 10 to 30 percentage for the testing set

and the rest for the training dataset. Moreover, there is a division between training

set and validation set that was set to 20% of the training set. The validation set is

employed as an independent dataset that was not used while training the model.

This dataset serves the purpose of assessing the model’s performance on data that

has never been encountered before. This aspect is crucial for comprehending the

model’s ability to generalize patterns from the training data to previously unseen

data.

In the end we collected 3 hours and 48 minutes of data, 19 minutes for

each word of the dataset, for a total of 13,681 samples, 1140 samples per word.

For the label “other” were collected 6 minutes and 55 seconds, for a total of

415 samples.
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4.2 Components Implementation

4.2.1 Audio processing component

The implementation of audio processing functions is mandatory for the implemen-

tation of the audio data elaborating component. Almost always an identical part

will be used to process the raw data, while another more specific part is responsible

for extracting the features.

In Edge Impulse, for the implementation of the Impulse, a Time series data

was chosen in which a 1-second window was initially set for each recording. It was

chosen an increase of 1/2 second maximum for audio data that exceeds the preset

size and the frequency was set to 16,000Hz for recordings, the same used during

the actual recordings. And, finally, the active padding bits were set to 0 if the

audio data are smaller than 1 second. Figure 4.3

For features extraction, analyzing the available technologies and the results

achieved in other similar projects, it was chosen to use MFCC. It is also chosen

not to use the default block, but to clone the existing one and to customize it [21].

Figure 4.3: Audio processing block
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The decision was made to duplicate the existing block to enable the direct mod-

ification of parameters and functions within the Python code, thereby affording

greater flexibility in configuration. It is feasible to introduce additional parameters

or functions or to modify the existing ones. To do all the steps highlighted before,

it has been cloned the Git repository of Edge Impulse containing the MFCC block.

The parameters used for the MFCC block are shown in the Figure 4.4.

Figure 4.4: MFCC Parameters
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4.3 Data Elaboration

In a typical ML project, the raw data necessitates pre-processing and refinement

before being fed into the NN. It is of paramount importance to manipulate this

input data effectively to ensure its suitability for NN training.

4.3.1 Features extraction and data analysis

In this phase, we will use the MFCC component described before. The raw data,

or raw features, are given as input to the second block and then the processed fea-

tures are obtained. Edge Impulse allow us to recall the feature extraction process

through a graphical interface. The results given by the software is in the form

of spectrogram and no longer a sound wave. The raw and processed features in

comparison are very different, and this can be seen in the Figure 4.5.

(a)

(b)

Figure 4.5: Comparison between before and after applying the MFCC
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The results obtained from the previous operation can be analyzed by the Fea-

tures Explorer tool provided by Edge Impulse. It is also feasible to assess the

device’s target performances, as illustrated in Figure 4.6. It is crucial to take into

account the resulting data to prevent improper memory usage when the model is

loaded onto the Arduino Portenta H7.

Figure 4.6: On Device performance

The previous tool also allows performing an in-depth analysis of the data in

a two-dimensional environment in which Edge Impulse, through a scaling, reduce

the multidimensionality of the features.

In 4.7, the results are presented, where any outliers have been examined through

data cleaning, data re-processing, re-execution of the data split, or the analysis of

pertinent feature details. Furthermore, it is essential to underscore that the NN

has the capacity to classify data optimally and accurately. This is particularly

pertinent when the NN is capable of distinguishing between various classes and

when distinct clusters are discernible.

32



CHAPTER 4. SYSTEM IMPLEMENTATION

Figure 4.7: Data analysis on Features Explorer
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4.4 Neural Network Implementation

The component containing the NN is the core of the system, and it must be

carefully implemented in order to obtain a good inference model. The system’s

NN was implemented, starting from a basic one, after an in-depth study of NNs for

similar problems [22]. After developing and testing various networks, it was chosen

to implement the one that will be described later in this chapter. Subsequently, it

was decided to focus, deeply, in the next chapter, on the testing part which is the

most important for creating a real and functioning system.

In general, as it is known from the ML state-of-art, there is no single NN

that universally outperforms all others; rather, the choice depends on the specific

problem or dataset. With this premise in mind, we have opted to analyze two

types of CNN, namely the 1D and 2D, respectively.

The choice between a 1D Convolutional Network (1D CNN) and a 2D Con-

volutional Network (2D CNN) depends on the type of data you are dealing with

and the goals of your application. 2D CNNs are suitable for two-dimensional data,

such as images or data with a matrix structure, and they can capture spatial rela-

tionships in two dimensions. 1D CNNs are usually used for sequential data, such

as time series, audio data, text, and one-dimensional signals in general. 1D CNNs

are generally more computationally efficient than 2D CNNs. They operate in a

single dimension, and they require fewer parameters and fewer convolution opera-

tions. Hence, the selection of a 1D CNN for our system was straightforward and

logical, aligning with the considerations mentioned earlier.

Now it is time to go into details and explain step by step what has been done

to implement it.

The NN was implemented in Python by using the TensorFlow framework,

in the Edge Impulse environment. Before, preliminary operations must be car-

ried out. Firstly, the value of the EPOCHS, the LEARNING RATE and the

BATCH SIZE were set to 150, 0.005 and 32 respectively, then a sequential model

with ”model = Sequential()” function of TensorFlow library was created. Later, a

reshape of the input data was inserted to prepare them for the NN, and they were

resized with the command Reshape. Hence, they have been scaled back to [[input

length / 13], [13]] i.e., input length divided by 13 as the size of the vectors and 13
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channels. This is because it was chosen to use 13 coefficients in the MFCC block.

Subsequently, it has been added to the hidden layers of the network. Each level,

in addition to the Convolutional, Pooling and Activation levels, also has a Dropout

layer, used above all to avoid the “overfitting” of the network. In the final levels

the data is flattened, through “Flatten”, and passed into a final “Dense” level,

therefore completely connected, which will have 13 neurons, therefore one for each

class to be recognised, this is the output level, Figure 4.9.

After defining the model, important parameters and aspects of the network

were chosen and configured. Foremost, the ADAM (ADAptive Moment esti-

mation) optimizer, Figure 4.8, one of the most used in NNs and which performed

well in this case too. The parameters passed are a Learning Rate of 0.005 which

seemed ideal from the first test results, and the other two parameters which are

almost always standard.

Figure 4.8: ADAM Optimizer on the Neural Network
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Figure 4.9: Neural Network Implementation

4.4.1 Training phase

In the training phase, it’s used the NN described before. The output of the MFCC

block is inserted as input to the NN and the training is performed. The output of

the execution is shown in the software interface, as it’s possible to see in the Figure

4.10, and this is used to analyze the progress of the training before to evaluate the

results. During this phase, important factors such as overfitting are evaluated.

It’s crucial to highlight that all the training process is done in an automatically

way by the Edge Impulse.
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Figure 4.10: Training output

4.5 First Model evaluation

Once the network training has been carried out and finished, the Edge Impulse

software provides us, through its graphical interface, a view on the results obtained

from this procedure. All these results are useful for our studies because starting

from them, it is possible to carry out all the necessary evaluations. First, we

evaluate whether the model has been trained correctly or there is some, or most,

data that does not match the specific labels. Subsequently, using the testing

dataset it is possible to evaluate the final accuracy value pertaining to the testing

phase. This accuracy value can then be compared with the real testing values,

through the use of the Portenta board.

4.5.1 Training results

Initially, the evaluation conducted, as depicted in the Figure 4.11, focuses on the

confusion matrix following the training phase. This tool is commonly employed in
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classification ML problems to evaluate the performance of a model. It allows to

clearly and concisely visualize how well or poorly a model is able to classify dif-

ferent input classes. The confusion matrix is organized into a table with rows and

columns, each row represents the actual class of the test instances and each column

represents the class predicted by the model. The confusion matrix is useful for

calculating various metrics for evaluating model performance, including accuracy,

precision, recall, F1-score, and others. These metrics provide detailed information

on the performance of the model in terms of correct classification and errors made.

Figure 4.11: Confusion matrix of the model

The final accuracy that model reached is equal to 95.3%. Each word, trained

in the model, reaches a good value of accuracy, they are all above 94%.

A special mention, in this case, should be made for the “other” label. As

already mentioned, through this label, we try to train the network for everything

that is not part of the 12-word dictionary. As you can see from the table, the
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accuracy value compared to all other labels is much lower, equal to 62.9%. This

result is achieved because various noises and other words, even similar to those in

the dictionary, were used as recordings for the other label. This was done to make

the experiments as realistic as possible, and therefore, it occasionally happens that

recordings labeled with “other” are recognized as words with different label.

Another very important thing to show, and which is provided by Edge Impulse,

is the Feature Explorer, shown in the Figure 4.12. Using this tool, we are able to

graphically visualize how the training dataset is clustered, by merging similar data

with the same label together. Therefore, as a final consideration, we can assert

that, in this case, the closer the data are to each other, the better the model is

trained.

The last consideration concerns the data present at the bottom of the figure.

These three values represent, respectively, the inferencing time, the peak of the

RAM usage, and the amount of flash memory used by the model. It should be

highlighted, however, that these three values are only estimates made by Edge

Impulse, which knows that the model will be loaded on the Portenta. In fact, in

the Chapter 5, in the real testing phase, the inference model, on the real device,

will be evaluated and compared with this one.

Figure 4.12: Feature Explorer for Training Dataset
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4.5.2 Testing results

What was done for the training phase, described previously, was subsequently done

for the testing phase, again on Edge Impulse. As it can be seen in the Figure 4.13,

the accuracy value achieved is 91.4%.

The result obtained here is slightly different to the one reached before. This is

normal, and it is not due to the overfitting of the network.

This minimal difference between the accuracy during the training phase and

that during the testing phase suggests that the model is able to generalize well

from information learned during training to new data not seen during training.

Thus, the objective was not necessarily to obtain identical accuracies between the

two phases, but rather to minimize the difference and seek a balance between

accuracy and generalization ability.

Figure 4.13: Testing performances on Edge Impulse

As done previously, also in this case the various clusters were displayed, one

for each label. The Data Explorer referring to the testing dataset is shown in the

following Figure 4.14.
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Figure 4.14: Feature Explorer for Testing Dataset

4.6 Arduino Portenta H7 Deployment

Once the model is obtained, the testing phase can start, and the model can be

converted into a TFLite model by creating a library model and generating the

sketch for uploading onto the board, which will import this library. The conversion

of the model into lite model and library generation are managed by EdgeImpulse.

Once the model is obtained by all the steps in the software, it was requested as an

Arduino library. At this point, to carry out the final step, it is necessary to use an

Arduino sketch which includes the library obtained. The sketch implementation

is one of the most delicate parts of the project, and it determines the correct

functioning of the system.

The goal of the sketch is to run inferences in parallel to recordings, without

losing audio data while the inference is going on. One of the most important

parameters to take into account is the size of the slices for each recording win-

dow. The library, will make inferences by joining the number of consecutive slices

indicated and creating a window of second.

There are two important things to take into consideration: the first one, that

a few slices per window could cause the inference to lose quality, the second one

that many slices increases the number of inferences performed, but the inferences

have less chance of missing a spoken word and the computational complexity is

increased.

Therefore, a slice size of 250 ms is initially chosen, four slices that scroll in the

inference window. In the IDE the implementation of the sketch was performed by

including different methods and, obviously, the setup() and loop(), the classical
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method of the Arduino programming. Two buffers were used in order to alternate

for recording and inferences, so that inferences and recording can be performed in

parallel. The time management is fundamental, when a data is written in one of

the two buffers you must be sure that the inference on that data has already been

performed.

Figure 4.15: Buffers and microphone initialization methods

The buffers, cited before, are initialised with a size equal to the size of the slice,

as in possible to see in the Figure 4.15. After, the microphone was initialised using

the PDM interface of the Arduino library. Later, the callback function is set to

be recalled when there are available data from the microphone. The function read

the data and put them in the active buffer after which is set to ready, warning

that data is ready. Figure 4.16
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Figure 4.16: Callback method

In the Figure 4.17 it’s shown a small but important detail of the loop method.

There, the microphone inference record() method check the variable buf ready

that must be found at 0. Then, the method waits for the recording process to

finish populating one of the two buffers, and, subsequently, can set the variable to

1.

Figure 4.17: Important detail of the loop() method

After that, the inference process immediately puts the variable back to 0 and

calls the function run classifier continuous() in order to perform the inference by

passing the signal object through the pointer to the function in the Figure 4.18.

This last function accesses the current buffer, the results are printed, and the loop

is re-executed.
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Figure 4.18: Function referred to the current buffer
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Testing phase

This Chapter describes the testing activities performed over an Arduino Portenta

H7, equipped with the models previously designed and trained through NN for

recognizing words spoken with different accents and in presence of background

noises.

Here, some useful variables have been added to the sketch, as detailed in the

Chapter 4. These variables aid in assessing the accuracy of the classification pro-

cess and provide insights into the percentage of correct classifications. Therefore,

a new result for a class is scored every time the classification exceeds the score of

0.6, as you can see in the Figure 5.1.

The tests to analyse the system were carried out by seven different people, at

different distances and with different background noises. In particular, there were

4 male and 3 female voices. As regard to noises, they were simulated in three

different scenarios: the first one without any type of noise, the second one with

voices and the third one with white noise, both last two simulated using [20].

With regard to the positions from which the words were pronounced by the

people, it was decided to replicate the same positions that were employed in con-

structing the dataset and the following are recalled. There are three positions that

are 45 degrees to the left of the microphone, in front of the microphone and 45

degrees to the right. The pronunciations, in order to test the system, are repeated

at two different distances which are 0.5 meters and 1.5 meters.

It was chosen to use this type of scenarios because they are the same ones used
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Figure 5.1: Sketch output inference

during the data collection phase to train the model. Therefore, in the following

paragraphs there will be an overview of each individual scenario and in the end

there will be a recap of all the experiments carried out.
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5.1 First scenario - Silent background

The first scenario regards the experiments without any type of background noise.

It was chosen to start from this one in order to test the system in a scenario in

which there is no disturbance to the words spoken. Therefore, the person finds

himself alone in front of the microphone.

To perform the experiments and assess the model’s performance in real-world

conditions, each word was repeated five times in each position and at each dis-

tance. Consequently, in each scenario, every word was spoken a total of 30 times.

Subsequently, the results, presented in Table 5.1, will be analyzed later in the this

section. For more simplicity, in the table, the following notations will be used to

differentiate male and female voices: for male we’ll use M. Voice 1 notation and

so on, by changing the number for each different person, and for female F. Voice 1

and the same as before for the number. It’s important to highlight that for each

person there will be two rows, the first for the number of word recognized by the

system and the second for the percentage of accuracy of word recognized.

# Bello Bonito Brutto Carino Feisimo Feo Hermoso Orrendo Orribile Pesimo Precioso Stupendo

M. Voice 1 27 28 20 27 18 28 27 27 27 21 23 20

% Accuracy 90,00 93,33 66,67 90,00 60,00 93,33 90,00 90,00 90,00 70,00 76,67 66,67

M. Voice 2 25 27 17 25 18 27 24 28 28 18 27 26

% Accuracy 83,33 90,00 56,67 83,33 60,00 90,00 80,00 93,33 93,33 60,00 90,00 86,67

M. Voice 3 21 23 27 28 26 25 24 22 16 18 22 24

% Accuracy 70,00 76,67 90,00 93,33 86,67 83,33 80,00 73,33 53,33 60,00 73,33 80,00

M. Voice 4 28 26 27 26 24 29 26 27 26 24 22 23

% Accuracy 93,33 86,67 90,00 86,67 80,00 96,67 86,67 90,00 86,67 80,00 73,33 76,67

F. Voice 1 24 26 25 27 22 27 25 22 22 22 24 25

% Accuracy 80,00 86,67 83,33 90,00 73,33 90,00 83,33 73,33 73,33 73,33 80,00 83,33%

F. Voice 2 28 26 28 26 24 25 27 26 27 26 26 28

% Accuracy 93,33 86,67 93,33 86,67 80,00 83,33 90,00 86,67 90,00 86,67 86,67 93,33

F. Voice 3 22 24 23 24 25 27 22 26 26 22 24 25

% Accuracy 73,33 80,00 76,67 80,00 83,33 90,00 73,33 86,67 86,67 73,33 80,00 83,33

Total % Accuracy 82,22 85,71 79,52 87,14 74,76 89,52 83,33 84,76 81,90 71,90 80,00 81,43

Table 5.1: Experiment results - Silent Background
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The total average of Accuracy Percentage for this first experiment is 81.85%.

As we can see in the Chapter 4, the result obtained is now approximately 10%

smaller. This is considered acceptable and good compared to the one obtained pre-

viously in Edge Impulse because there are several factors that influence it. Firstly,

one reasons concerns the live testing and the fact that despite the slicing set to 250

ms, it is as if we were making the inference on the 1-second window. Consequently,

there were instances where words spoken between two slices, causing the model to

fail in recognizing them.

Secondly, as is well known from the state of the art of projects implemented

with TinyML, the results obtained with models implemented on real devices never

reflect the accuracy percentages obtained through implementation on computers,

and even in our case there is a small discrepancy. In fact, the model attempts

to identify patterns in the training data by learning from it during the training

phase. However, generalization, or the capacity to apply discovered patterns to

new, previously unseen data, is its primary objective. It is anticipated that there

will be differences in performance between the training and testing data sets,

as the testing data is designed to represent scenarios that the model has never

encountered before.

Another very important thing to underline is the inference time and therefore

the time that the model on the device takes to carry out the classification. As seen

and described previously, especially in the Figure 4.12, the time estimated by the

cloud platform was 1 ms. However, the result obtained through the classification

in the on-board testing is 14 ms, as visible in the top of the Figure 5.1. There

is a difference between these two values, and it is normal and expected because

the device has reduced computational capabilities. As a result, the execution

time in this case is slightly higher than what was previously observed on the Edge

Impulse platform. Nevertheless, it remains a relatively good and acceptable result.

Finally, it is possible to take into account to use the system in a real place, such

as a museum or natural park.

48



CHAPTER 5. TESTING PHASE

5.2 Second Scenario - Voices background

In the second scenario, all the experiments were carried out with a voices back-

ground. It was chosen to use this type of noise in order to simulate a case that

was as real as possible. During the analysis phase, it was thought that it would be

possible to implement and distribute the system in places where there are many

people talking to each other that create a noisy environment. However, it is nec-

essary to test the system also in conditions other than the ideal case of a silent

scenario. This evaluation is necessary to assess its capabilities and determine its

feasibility for implementation in noisy or crowded places.

With this scenario, therefore, we tried to put the system in difficulty such in

a way as to evaluate its efficiency even in conditions in which the microphone is

disturbed.

# Bello Bonito Brutto Carino Feisimo Feo Hermoso Orrendo Orribile Pesimo Precioso Stupendo

M. Voice 1 26 20 28 27 18 12 25 18 22 26 23 19

% Accuracy 86,67 66,67 93,33 90,00 60,00 40,00 83,33 60,00 73,33 86,67 76,67 63,33

M. Voice 2 25 26 27 27 20 27 21 22 22 22 21 26

% Accuracy 83,33 86,67 90,00 90,00 66,67 90,00 70,00 73,33 73,33 73,33 70,00 86,67

M. Voice 3 28 24 22 23 24 26 22 24 25 24 28 27

% Accuracy 93,33 80,00 73,33 76,67 80,00 86,67 73,33 80,00 83,33 80,00 93,33 90,00

F. Voice 1 24 23 26 24 25 23 26 24 22 25 27 28

% Accuracy 80,00 76,67 86,67 80,00 83,33 76,67 86,67 80,00 73,33 83,33 90,00 93,33

F. voice 2 27 26 21 21 21 26 24 22 26 23 22 21

% Accuracy 90,00 86,67 70,00 70,00 70,00 86,67 80,00 73,33 86,67 76,67 73,33 70,00

F. Voice 3 25 22 26 25 24 22 24 21 24 25 26 28

% Accuracy 83,33 73,33 86,67 83,33 80,00 73,33 80,00 70,00 80,00 83,33 86,67 93,33

Total % Accuracy 86,11 78,33 83,33 81,67 73,33 75,56 78,89 72,78 78,33 80,56 81,67 82,78

Table 5.2: Experiment results - Voices Background

In this scenario, the total average of Accuracy Percentage is 79.44%. As

evident, in this case, the system’s efficiency is slightly reduced compared to what

was observed in the previous scenario.

In this scenario, we tried to put stress the system to evaluate its response

capacity. It has been simulated a new situation, different from the ideal case of
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silence background. In fact, it was chosen to test the model and the microphone

capabilities even if there are background noises, such as voices and people talking

incessantly, even with a high tone of voice.

5.3 Third Scenario - White Noise Background

The third, and last, scenario experimented considered a White Noise background.

The choice to incorporate this type of noise was aimed at assessing the system’s

performance under a different noisy background condition. Specifically, it was

selected to simulate a scenario where background noise might be present but not

as perceptible as voices

We will test the quality of the model even with this type of noise and evaluate

how much the microphone is disturbed. As done previously, everything will be

evaluated with the accuracy percentages of each single word in the dictionary pro-

nounced by each single person. Finally, the total average accuracy will be shown,

in such a way as to evaluate the results obtained in this case with the previous one.

# Bello Bonito Brutto Carino Feisimo Feo Hermoso Orrendo Orribile Pesimo Precioso Stupendo

M. Voice 1 22 27 21 28 15 24 28 24 22 11 17 21

% Accuracy 73,33 90,00 70,00 93,33 50,00 80,00 93,33 80,00 73,33 36,67 56,67 70,00

M. voice 2 27 28 23 30 24 26 23 23 28 24 25 26

% Accuracy 90,00 93,33 76,67 100,00 80,00 86,67 76,67 76,67 93,33 80,00 83,33 86,67

M. Voice 3 22 29 25 28 25 28 28 27 25 26 22 24

% Accuracy 73,33 96,67 83,33 93,33 83,33 93,33 93,33 90,00 83,33 86,67 73,33 80,00

F. voice 1 24 22 24 24 22 24 25 24 24 25 26 22

% Accuracy 80,00 73,33 80,00 80,00 73,33 80,00 83,33 80,00 80,00 83,33 86,67 73,33

F. Voice 2 28 27 28 27 22 26 24 25 26 23 23 23

% Accuracy 93,33 90,00 93,33 90,00 73,33 86,67 80,00 83,33 86,67 76,67 76,67 76,67

F.Voice 3 24 26 22 26 24 26 23 25 22 26 25 22

% Accuracy 80,00 86,67 73,33 86,67 80,00 86,67 76,67 83,33 73,33 86,67 83,33 73,33

Total % Accuracy 81,67 88,33 79,44 90,56 73,33 85,56 83,89 82,22 81,67 75,00 76,67 76,67

Table 5.3: Experiment results - White Noise Background

In this third and last scenario, the total average of Accuracy Percentage is
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81.25%. Indeed, as evident from the results, in this scenario with different noise

compared to the previous one, there is a slightly improved accuracy. This suggests

that the system, in this case, exhibits a better ability to recognize spoken words

compared to when background voices were present.(Table 5.2).

Another important consideration to make is that relating to the people who

carried out the experiments. It was decided to test the system with people who

speak Italian as their native language and with a person who speaks Spanish as

his native language (in particular, M.Voice 2 in the tables). This is important

because, as already described in the previous chapters, the dictionary that the

system is able to recognize is made up of Italian and Spanish words.

Therefore, looking the results of tables 5.1, 5.2, 5.3, it is possible to state that

the system does not notice differences between people of different native languages,

and this is important because it is able to recognize what is said to it regardless

of the person’s nationality and spoken language.

5.4 Results comparison

In conclusion, all the results obtained from the aforementioned experiments are

compared and presented in Table 5.4. This table provides the average accuracy

values for each individual word within each respective experiment, facilitating a

comprehensive comparison.

Therefore, all the values regarding the accuracy, both for each word and sce-

narios, are pretty good and in line with what was previously described.

In conclusion, it can be state that the system developed in this thesis, starting

from data collection to testing on the real device, is reliable. After the several

in-depth tests, it is evident that every part of the project aligns with expectations.

Consequently, should the need arise, the system can be deployed in places such as

museum or natural parks, in order to test furthermore its capabilities.
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First Scenario Second Scenario Third Scenario

Bello 66.67% 86,11% 81,67%

Bonito 85,71% 78,33% 88,33%

Brutto 79,52% 83,33% 79,44%

Carino 87,14% 81,67% 90,56%

Feisimo 74,76% 73,33% 73,33%

Feo 89,52% 75,56% 85,56%

Hermoso 83,33% 78,89% 83,89%

Orrendo 84,76% 72,78% 82,22%

Orribile 81,90% 78,33% 81,67%

Pesimo 71,90% 80,56% 75,00%

Precioso 80,00% 81,60% 76,67%

Stupendo 81,43% 82,78% 76,67%

Total 81,85% 79,44% 81,25%

Table 5.4: Results comparison
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Conclusions

This thesis introduces a novel application that leverages TinyML techniques to

perform Speech Recognition for evaluating public perceptions of artworks in a

museum. By harnessing the potential of microcontrollers to substantially minimize

energy consumption and eliminate the requirement for large, resource-intensive

deep learning models typically hosted on conventional servers, on-site analysis

becomes feasible, allowing for immediate processing at the network’s edge. This

brings several benefits over Cloud-based solutions, such as reducing data traffic

and communication delays as well as preserving privacy.

The proposed approach offers a means to outperform the constraints imposed

by conventional evaluation tools (explicit feedback). Present-day user feedback is

indeed provided hastily, resulting in less-than-complete sincerity. By discerning

the level of appreciation from people’s speech (implicit feedback), the obtained

results are expected to surpass the efficacy of current state-of-the-art approaches.

The classification model was meticulously developed and trained on the Edge

Impulse platform, achieving an accuracy score of 91.40% during the platform’s test

phase. To assess the model’s real-world performance in a dynamic, real-time infer-

ence environment, it was seamlessly integrated into the Arduino Portenta board.

Then, three distinct scenarios were thoughtfully crafted for the model’s evaluation.

In the first scenario, characterized by a noise-free background, the model exhibited

an impressive accuracy rate of 81.85%. In the second scenario, with background

voices present, the model maintained a robust accuracy level of 79.44%. Lastly,
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in the third scenario featuring a backdrop of white noise, the model demonstrated

a commendable accuracy of 81.25%. The proposed research underscores the via-

bility of utilizing TinyML for the development of SA systems, offering a practical

and promising approach to meet the evolving demands of a customer-centric and

increasingly demanding market. Notably, Edge Impulse emerges as a cutting-edge

software solution, showcasing its prowess in optimizing the application of TinyML

techniques. Moreover, it proves its adaptability even on systems with limited CPU

resources.

Future works

The research proposed in this thesis represents a starting point for future inves-

tigations in this field. It offers several avenues for potential improvement and

expansion. Firstly, there is room for enhancing the dataset. This could involve in-

creasing the volume of data, improving data quality, and diversifying the content.

Expanding the vocabulary to include words commonly used by users to describe

attractions at places of interest is one possibility. Additionally, adding support for

languages such as English, which is not currently present in the dataset, would

broaden its applicability.

In the future, it may be worthwhile to transmit analysis results obtained on the

microcontroller to an edge server, possibly using protocols like LoRa. This would

enable further data processing and analysis. To ensure data privacy, only the

analysis results could be transmitted, which could then be used to create models

and track trends through a dashboard. This would provide real-time updates on

the management of places of interest based on visitor sentiment.

Expanding the ML model is another avenue for improvement. Beyond word-

based analysis, incorporating additional features such as tone of voice, facial ex-

pressions, and other multimodal data could significantly enhance the depth and

accuracy of the results. Complex computations performed on the server-side would

further refine these insights.

Lastly, optimizing components beyond ML, such as the recording sketch run-

ning on the Arduino Portenta, is essential. This component has a direct impact on

the system’s output and should be a final focus for achieving the desired results.
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